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Abstract

This paper proposes a dynamic model of bargaining to analyze decentralized markets where
buyers and sellers obtain information about past deals through their social network. There is a
unique equilibrium outcome which depends crucially on the peripheral (least connected) indi-
viduals in each group. The main testable predictions are that groups with high density and/or
low variability in the number of connections across individuals allow their members to obtain a
better deal. These predictions are tested in a lab experiment through 4 treatments that vary the
network that groups of 6 subjects are assigned to. The results of the experiment lend support to
the theoretical predictions: subjects converge to a high equilibrium demand if they are assigned
to a network that is dense and/or has low variability in number of connections across members.
An extension explores an alternative set-up in which buyers and sellers belong to the same social
network: if the network is regular and the agents are homogeneous then the unique equilibrium
division is 50-50.
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The peculiar character of the problem of a rational economic order is determined precisely by the fact

that the knowledge of the circumstances of which we must make use never exists in concentrated or

integrated form, but solely as the dispersed bits of incomplete and frequently contradictory knowledge

which all the separate individuals possess. [...] The problem is thus in no way solved if one can show

that all of the facts, if they were known to a single mind [...], would uniquely determine its solution;

instead we must show how a solution is produced by the interactions of people each of whom possesses

only partial knowledge.

F. A. von Hayek, “The use of knowledge in society.” AER, XXFXV (4), September 1945.1

1 Introduction

Individuals who belong to close-knit groups often enjoy an advantage in market interactions. For
instance, Greif [1993] describes how in the 11th century Maghribi merchants joined into tightly
integrated communities to facilitate trading across the Mediterranean in an environment character-
ized by a high degree of uncertainty and incomplete information. Rauch [2001] reviews empirical
evidence that the presence of ethnic immigrant communities significantly increases international
trade volumes, especially for commodities whose price is variable or uncertain. This paper combines
a theoretical model and an experiment to explore one type of advantage that these groups provide,
and to relate the internal structure of the group to observed market outcomes.

The core idea is that belonging to a group gives an informational advantage: individuals who
are part of a group use their interactions to gather information about past transactions which they
employ in future bilateral negotiations. This advantage is relevant in markets that are character-
ized by incomplete information, uncertainty about the price of the goods, and private bilateral
negotiations. In these markets an individual is unable to collect information on the current price of
a good due to the unobservability of private transactions, and therefore she turns to other members
of her group to gather information about recent transactions before starting a trade.

In the first part of the paper I develop a bargaining model between agents belonging to different
groups in which the equilibrium outcome depends on the structure of interactions within each
group. The model is an extension of the evolutionary bargaining framework first formulated by
Young [1993a]. The bargaining procedure and the behavior of agents is the same as in Young’s
model: buyers and sellers are randomly matched to play the Nash demand game and buyers (sellers)
choose an optimal reply to a sample of previous demands made by sellers (buyers) with probability
1− ε, and a non-optimal reply, i.e. a “mistake,” with probability ε.2

The novel element introduced here is the modeling of the process by which agents receive
information to play the game: information travels through a communication network that connects
the agents in each group. Specifically, the amount of information that buyer b receives from another
buyer b′ is the realization of a Poisson process connecting b to b′. Thus, the total information
sample that b receives before the bargaining round consists of all the information coming from the
realization of the Poisson processes that connect b to the other buyers she communicates with.
A network gB is an abstract representation of the average communication flows in the group of
buyers: the strength of a link gbb′ is equal to the rate of the Poisson process connecting b to b′.

1Quoted in Young [1998].
2The role of buyers and sellers is completely interchangeable: the description of the model will focus on buyers

only for expository purposes. Throughout the paper, the buyer is female and the seller is male.
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Theorem 1 proves that if the communication networks of buyers and sellers are connected
and if they are not complete networks then the process without mistakes always converges to a
convention where each buyer always makes the same demand x and each seller always makes the
same demand 1 − x. The proof shows that this condition on the network structure guarantees
that the information available to each agent on the history of demands is sufficiently incomplete to
avoid the whole process getting stuck in a cycle. Thus, the network structure naturally provides
the incompleteness of information which Young [1993b] exogenously imposes to prove that adaptive
play converges to a convention for any weakly acyclic game.

Theorem 2 proves that the process with mistakes converges to a unique stable division, which is
the asymmetric Nash bargaining solution (ANB) with weights that depend on the network structure.
Specifically, the weights are determined by the subset of peripheral agents in each group with the
least number of and/or weakest communication links. A consequence of this result is that, given a
budget of links to allocate, the optimal internal structure for a group are quasi-regular networks,
i.e. networks where all the agents are connected by strong links and have a very similar number of
connections.

Corollary 1 derives the main testable predictions of the paper by exploiting the relation between
the network structure and the outcome of the bargaining process proven in Theorem 2. It shows
that individuals belonging to a group with a high density of connections and/or a low variability of
connections across individuals will fare better. The changes in the network structure are modeled in
terms of first and second order stochastic dominance shifts in the weighted degree distribution of the
network, i.e. variations in the relative frequencies of agents with different number of connections.

As Manski [1993] points out, the causal identification of the role of network structure in empirical
data is mired with difficulties, and therefore in the second part of the paper the validity of the model
is tested by using a lab experiment. Subjects are told that they are traders in a market and they
will be trading with a seller played by a computer. At each trading round there are 17 vouchers
at stake: if the sum of the subject and the seller’s demands is greater than 17 the subject gets
0 vouchers, otherwise she gets the number of vouchers she demanded. The treatment variable
is the assignment of subjects to groups of 6 that differ in the underlying network that allows
communication among subjects. Each subject plays 50 rounds of trading in the same position in a
network, and the only network information she sees is the (fictitious) initials of the other subjects
she is connected to. At the beginning of a trading round a subject receives a sample of information
about the demands made by the seller in past transactions with the other subjects she is connected
to. This information is randomly sampled by the computer from the history of play and it is the
only information a subject has prior to making a demand. At the end of the trading round, the
subject receives feedback on whether she has won the vouchers she demanded or not, before the
next trading round begins. There are 4 treatments that differ in the communication network of the
group subjects are assigned to: a regular network of degree 4 (R4), a circle network (C1), a star
network (ST ), and a circle with spokes network (C2), which are shown in Figure 1.

Theorem 2 and Corollary 1 allow us to formulate several hypotheses on the differences in
outcomes across treatments. Theorem 2 states that (H1) subjects in the same group converge
to the same demand. Each subject in R4 has more connections than any subject in any of the
other networks so, by Corollary 1, (H2) subjects in R4 demand more vouchers after convergence
than subjects in any other network. All subjects in C1 have the same number of connections, while
subjects in C2 and ST belong to networks with similar density but higher variability of connections
than C1, so by Corollary 1 (H3) subjects in C1 demand more vouchers after convergence than

3



Figure 1: Networks used in the experiment. From left to right: regular network of degree 4 (R4),
circle network (C1), star network (ST ), and circle with spokes network (C2).

subjects in C2 and ST . Theorem 2 implies that (H4) subjects in the C2 and ST networks demand
the same number of vouchers after convergence. The statement of Theorem 2 also implies that
after convergence there will be no difference across subjects in the same network. Thus, (H5) the
subject at the center of the ST network demands the same number of vouchers after convergence
as the subjects assigned at the periphery, and (H6) in the C2 network the subjects demand the
same number of vouchers after convergence independently of their position in the network.

The results of the experiment lend support to the theoretical predictions. Despite adopting a
demanding definition of convergence, 83% of the markets converge to a stable demand and 77%
converge to a stable demand and never move away from it (H1). Subjects in R4 converge to a
significantly higher demand than subjects in C2 and ST in all markets, and a significantly higher
demand than subjects in C1 in the markets that have converged (H2). Subjects in C1 converge
to a significantly higher demand than subjects in ST in all markets, and a significantly higher
demand than subjects in C2 in the markets that achieved convergence (H3). There is no significant
difference between the ST and C2 treatments (H4), and a subject’s demand is independent of her
position in the network in both the ST (H5) and C2 (H6) treatments.

The final part of the paper analyzes two extensions of the basic model, which fulfill a dual pur-
pose. First, they show the generality of the results in the main set-up by relaxing the assumptions
that the groups of buyers and sellers are separate and that only direct communication is possible.
Second, they demonstrate that the introduction of the network leads to a rich set of results that
would not be possible to obtain in Young [1993a]’s original framework.

The first extension explores how the theoretical predictions change if buyers and sellers belong
to the same communication network. The unique stable division is still the ANB solution in
Theorem 2. Despite the equilibrium prediction being unchanged, the desirable architectures and
the comparative statics lead to very different results, which highlights how the introduction of the
network leads to new insights that are not accessible to a model without the network. Specifically,
the desirable architectures for the buyers are now core-periphery networks: the buyers form a
core network where they are connected by strong links and they have a very similar number of
connections, while the sellers are at the periphery where each one of them is connected by one
link to a buyer. Moreover, a denser communication network leaves the ANB unchanged, but
less variability of connections across individuals narrows down the difference between the shares
of the two groups. If the network is a regular network, then the solution is the 50-50 division.
This is a novel mechanism for the emergence of the 50-50 division that has not been advanced in
previous contributions, including Young [1993a]’s result which is based on the presence of agents
that exchange roles and can be both buyers and sellers at different times.

The second extension explores how the theoretical predictions change if we allow for indirect
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communication, which means that information can travel more than one step in the network and
therefore an agent can receive information from friends, friends of friends, and so on up to a distance
r. The theoretical results generalize in a natural way. The generalized version of Theorem 1 states
that if the communication networks of buyers and sellers are connected and there is at least a
pair of agents at a social distance greater than r then the process without mistakes converges to a
convention. The generalized version of Theorem 2 proves that the process with mistakes converges
to the asymmetric Nash bargaining solution (ANB) with weights that are determined by the subset
of agents in each group with the least decay r-centrality, which is a metric that captures the amount
of information an agent receives from her social network up to a distance r.

The remaining part of this section surveys the related literature. Section 2 presents the model.
Section 3 derives the bargaining solution and analyzes its relation with the network structure.
Section 4 presents the design of the experiment and section 5 analyzes the results. Section 6 inves-
tigates a different set-up of the model where buyers and sellers belong to the same communication
network. Section 7 extends the model to allow for indirect communication. Section 8 concludes.
Appendix A contains the proofs omitted in the main text.

1.1 Related literature

In previous contributions there are at least two complementary explanations of why belonging to a
group leads to a competitive advantage in a market with incomplete information. The first one was
originally advanced by Greif [1993]: an individual trader in a group can rely on the other members
of the group to inflict a costly punishment to a cheater by cutting all future trade between any
member of the group and the cheater. He illustrates this with a simple model in a repeated game
framework, and he draws on historical records to discuss its relevance for trading.

The second explanation is the core idea behind the model presented here: an individual in
a group has access to information from other group members, and this leads to a competitive
advantage in a market where information is incomplete. Rauch and Casella [2003] proposed a model
where information-sharing within ethnic groups influences resource allocation in international trade
markets affected by incomplete information. Rauch and Trindade [2002] show that the information-
sharing story fits observed international trade flows better than the collective punishment one. One
of the key differences between this paper and these previous contributions is that it explicitly models
the role of the network structure of interactions within a group.

Methodologically, this paper is based on the evolutionary bargaining framework first formu-
lated by Young [1993a]. The novel element introduced here is the modeling of the process by which
agents receive information to play the game: information travels through a communication network
that connects the agents in each group. The introduction of the network demands the construc-
tion of a different Markov process to describe the evolution of the system, which requires a novel
equilibrium analysis. The equilibrium outcome depends on the underlying network and therefore
this allows a comparative statics analysis which would not be feasible in the model without the
network. Moreover, section 6 analyzes the case when buyers and sellers belong to the same commu-
nication network: the equilibrium outcome is unchanged, but the comparative statics predictions
are different, and this type of analysis is only feasible in the model with the network.

In the economics of networks literature a number of papers investigate how a network that
constrains agents’ interactions affects the outcome of a bargaining process. Selected contributions
include Calvó-Armengol [2001], Calvó-Armengol [2003], Corominas-Bosch [2004], Polanski [2007]
and Manea [2011]. The framework adopted here is conceptually different. In all the references listed
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above, the network is a constraint on the interactions that agents are allowed to have. On the other
hand, in this paper the network is a constraint on the information about past bargains that agents
have as they enter a bargaining round. Moreover, the focus of this paper is also different. Previous
work in the literature investigates how the position of one agent in a network affects her individual
payoffs. Here the aim of the paper is to understand how the overall structural properties of the
network determine the payoff that every individual in the whole group receives, independently on
their position in the network.

Two strands in the economics of networks literature examine the role of communications net-
works. The first one investigates the role of communication networks in labour markets, selected
contributions include Montgomery [1991], Calvó-Armengol and Jackson [2007], and Galeotti and
Merlino [2013]. These papers focus on how the structure of communication networks is a deter-
minant of aggregate labour market dynamics such as unemployment, wages, and inequality. The
second is two papers by Hagenbach and Koessler [2010] and Galeotti et al. [2013] who extend the
classical cheap talk framework to a network setting. The focus of this paper is on the role of com-
munication networks in determining outcomes in markets with bilateral bargaining, and it is the
first paper to investigate the role of communication networks in this domain.

This paper also contributes to a growing area of research at the intersection of the economics
of networks and the experimental economics literature. The experimental methodology allows
an unambiguous causal identification of the effect of network structure by creating the network
structure in the lab and making it the treatment variable. There are still a limited number of
papers in this vein of work, possibly due to the large number of subjects required and the fact that
some types of relations (e.g. friendship) are difficult to create in the lab. Some examples in the
economic literature are Corominas-Bosch and Charness [2007] who test Corominas-Bosch [2004]’s
bargaining model, Rosenkranz and Weitzel [2012] who investigate a public good game on a network,
Gallo and Yan [2014] who investigate a game of strategic complements on a network, Gërxhani et al.
[2013] who study employer information networks, Charness et al. [2014] who investigate network
games with incomplete information, and Gale and Kariv [2009] and Choi et al. [2013] who test
models of trading. This paper is the first experimental investigation of a theoretical model that
relates the structure of a communication network to the realized market outcome. Moreover, it is
the first experimental investigation of the role of the network as a constraint on information flows,
which seems a natural type of relation to investigate in an experimental setting because it is easily
created by designing a communication protocol among the workstations the subjects are assigned
to.

The model is applicable to markets where there is incomplete information about the price of a
homogeneous commodity: there are no posted prices and the agents communicate with each other
to learn about the current price. Similarly to classical bargaining models, each transaction is a
private, bilateral negotiation between two agents and the outcome in equilibrium will depend on
the risk profile of the agents in each group. However, the agents are boundedly rational: they base
their bid on information on past transactions they have collected from other agents in their group,
and they are unaware of the game they are playing or of the utility profile of their opponent. There
are many markets that share these characteristics in contexts such as developing countries3, illegal
trade, and the wholesale business. For instance, many wholesale fish markets are characterized by

3In many markets in developing countries prices tend to fluctuate due to exogenous factors affecting the supply
chain. Moreover, the lack of strong institutions is an obstacle to the adoption of publicly displayed prices allowing the
proliferation of decentralized bilateral transactions. See, e.g, Aker [2008] for evidence from grain markets in Niger.
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private, bilateral transactions and prices fluctuate due to exogenous factors such as wind and wave
height that affect the volume of the daily catch of fish.4 Gallo [2009] analyzes a dataset of prices in
the Fulton wholesale fish market collected by Graddy [1995], and finds evidence that the observed
pricing pattern is consistent with the predictions of the model presented in this paper.

In summary, the main contribution of this paper is twofold. First, the theoretical part constructs
a model to investigate the role of a group’s communication structure in markets where there is
incomplete information. This provides a theoretical underpinning to previous empirical studies
that emphasized the informational role of social structure in determining market outcomes. Second,
the experimental part is the first investigation of the role played by communications networks in
determining market outcomes in an experimental setting. It provides an empirical validation of
the causal relation of the structure of a group’s communication network on the equilibrium market
outcome.

2 The Model

This section presents the main elements of the model: the network concepts used, the adaptive
play bargaining process, and the Markov process which describes the evolution of the system.

Networks. A weighted, undirected network g is represented by a symmetric matrix [gij ]
n×n, where

gij ∈ R+. The entry gij indicates the strength of the communication link between i and j. If gij > 0
then agents i and j are connected and they communicate directly with each other. If gij = 0 then i
and j are not connected in the communication network. Throughout this paper let gii ≡ g, i.e. an
agent is connected with herself and the strength of this self-connection is the same for all agents.

The neighborhood of i in g is Li(g) = {j ∈ N |gij > 0}.5 di(g) ≡ |Li(g)| denotes the size of i’s
neighborhood, or the degree of i, in g. zi(g) ≡

∑
j∈Li(g)

gij is the weighted degree of i in g. Let
Z(g) = maxi∈N zi(g) be the maximum weighted degree of any agent in the network g. A complete
network is a network that belongs to the class of networks gC = {g|gij > 0, ∀i, j ∈ N} where every
pair of agents is connected. A regular network gd,a of degree d and link strength a is a network
that belongs to the class of networks gd,a = {g|gij = {0, a}; di(g) ≡ d; ∀i, j ∈ N ; a ∈ R+}. A
regular weighted network gk of weighted degree k is a network that belongs to the class of networks
gk = {g|zi(g) = k; ∀i ∈ N ; k ∈ R+}.
Adaptive play bargaining process. Consider two finite, non-empty and disjoint groups of
individuals B = {1, ..., nB} and S = {1, ..., nS}: the buyers and sellers. In each period t one buyer
and one seller drawn at random meet to divide a pie of size normalized to one. They play the Nash
demand game: b demands a fraction xt and s demands a fraction yt, if xt + yt ≤ 1 then b and s
get their demands, otherwise they get nothing. Assume that the set of possible divisions is discrete
and finite, and let δ be the smallest possible division. The sequence h = {(x1, y1), ..., (xt, yt)} is
the complete global history up to and including period t. Each agent remembers the last m rounds
of the bargaining game that she has played, where m stands for the memory of the agent and
m > max{Z(gB), Z(gS)}.

Agents receive information to play the game as follows. Suppose agent b ∈ B is picked to play
the game at t + 1: in the ∆t = 1 time period she receives information from some of the other

4Kirman [2001] provides a detailed description of wholesale fish markets.
5Note that this definition is slightly different than the standard one adopted in the literature because it allows

for i’s neighborhood to include i as well. This is because in our framework agent i’s own degree gii is allowed to be
positive. This difference affects the ensuing definitions as well.
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buyers in B about past bargaining rounds. Information arrival is modeled as a Poisson process.
Specifically, in the ∆t = 1 time interval, the probability P (sbj(∆t = 1) = k) that b receives a
sample sbj(∆t = 1) of k past bargains from agent j is equal to:

P (sbj(∆t = 1) = k) =
e−gbjgkbj
k!

where gbj is the rate of arrival of information to b from j. By standard properties of Poisson
processes, the expected amount of information b receives from j before each bargaining round is
E[P (sbj)] = gbj . Thus, we have that

∑
j∈Lb(g)

E[P (sbj)] = E[P (sb)] =
∑

j∈Lb(g)
gbj = zb(g), and

therefore before each bargaining round the expected size of the sample of past demands is dzb(g)e,
where d.e is the ceiling function to round it up to the nearest integer. Clearly, at each point in time
the realization of the Poisson process that determines how much information b receives from j may
be higher or lower than gbj , but over a long period of time the average amount of information per
time period that b receives from j will be equal to gbj . Thus, the network g captures the average
information flows between each pair of agents in the group over a long period of time.6

The variability of an agents’ information sample over time poses significant challenges to an
analytical investigation of the model. In order to overcome this, throughout the paper I impose
the mean-field assumption that the total amount of information an agent b receives is the same
across bargaining rounds. More formally, assume that the size of the information sample of the
buyer b is constant and equal to the amount of information b receives in expectation given the
Poisson processes involving b, i.e. sb(t) ≡ d

∑
j∈B gbje = dzb(g)e. Note that this assumption still

allows for the realization of each individual Poisson process to vary, and it fixes only the sum of the
realizations of all the Poisson processes. Thus, in some bargaining rounds agent b may receive most
of the information from her neighbor b′, while in other rounds b′ may not provide any information.
However, the total size of the information sample b receives before playing each bargaining round
is always the same.

Agents are boundedly rational as they are not aware of the game they are embedded in and
they base their decision exclusively on the information they receive. Specifically, agents do not
have prior knowledge or beliefs about the utility function of the other side, and they do not know
the distribution of utility functions in the general population. Agent b chooses an optimal reply to
the cumulative probability distribution G(y) of the demands yj made by sellers in the sample that
she receives, where G(y) = h

sb(t)
if and only if there are exactly h demands yl in the sample sb(t)

such that yl ≤ y.
Agent b has a concave and strictly increasing von Neumann-Morgenstern utility function u(x).

Assume that u(x) is defined for all x ∈ [0, 1] and that it is normalized so that u(0) = 0. Buyer b’s
expected payoff from demanding x is then equal to Eu(x) ≡ u(x)G(1 − x). Thus, b chooses xt+1

so as to maximize Eu(x), and if there are several values of x to choose from then each one of them
is chosen with positive probability.

The set-up for seller s is analogous, and the utility function of the sellers will be denoted by
v(y).

Markov process. Let S be the state space, whose elements are sets of vectors s = {v1, ...,vn},
where vi stands for agent i’s memory, which is a vector of size m, and n ≡ nB + nS . If i ∈ B then
vi = {yik−m+1, ..., y

i
k}, i.e. the entries of vi are the m last demands made by sellers in bargaining

6Note also that there is no need to assume that the Poisson process is truncated given that the memory m can be
arbitrarily large.
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rounds involving i. Similarly, if i ∈ S then vi = {xik−m+1, ..., x
i
k}. Let qb(x | s) be agent b’s

best-reply distribution, i.e. qb(x | s) > 0 if and only if demanding x is b’s best-reply to a sample
received when the system is in state s. Analogously, qs(y | s) is seller s’s best-reply distribution.

Assume that the process starts at an arbitrary time t0 > n · m, and denote the initial state
by s0. At each t > t0, one pair of agents (b, s) ∈ B × S is drawn at random with probability
π(b, s), where π(b, s) > 0, ∀(b, s) ∈ B × S. At time t, consider a state s = {vb,vs,v−b,v−s},
where vb = {ybk−m+1, ..., y

b
k}, vs = {xsk−m+1, ..., x

s
k}, and {v−b,v−s} denote the vectors that stand

for the memories of all other agents k 6= b, s. Define s′ to be a successor of s if it has the form
s′ = {v′b,v′s,v−b,v−s}, where v′b = {ybk−m+2, ..., y

b
k+1} and v′s = {xsk−m+2, ..., x

s
k+1}. The transition

probability Pss′ of moving from state s to state s′ is then equal to:

Pss′ =
∑
b∈B

∑
s∈S

π(b, s)qb(xt+1 | s)qs(yt+1 | s) (1)

Mistakes. In the process described so far agents always give a best reply to the sample they
happen to pick. In reality, people make mistakes for a variety of reasons: human beings are poor
at computing probabilities and they might miscalculate the expected utility from an offer, they are
prone to get distracted, they experiment, or sometimes they are outright irrational. The following
is a more formal definition of a mistake.

Definition 1. Let s = {vb,vs,v−b,v−s} and let s′ = {v′b,v′s,v−b,v−s} be a successor of s, where
vb = {ybk−m+1, ..., y

b
k}, vs = {xsk−m+1, ..., x

s
k}, v′b = {ybk−m+2, ..., y

b
k+1} and v′s = {xsk−m+2, ..., x

s
k+1}.

The demand xsk+1 is a mistake by b if it is not a best response to any sample b could have received
given that the system is in state s. A mistake ysk+1 by s is defined similarly.

Another concept that will be useful in the analysis of the perturbed process is the resistance in
moving from one state s to another state s′.

Definition 2. Let s and s′ be two states of the system. The resistance r(s, s′) is the least number
of mistakes required for the system to go from state s to s′.

Note that if s′ is a successor of s then r(s, s′) ∈ {0, 1, 2} given that the maximum number of
mistakes in any one-time transition is two, i.e. both the buyer and seller involved in that bargaining
round make a mistake.

Now let ε be the absolute probability that agents in the model make mistakes. Denote by
wb(x | s) the buyer’s conditional probability of choosing x given that the current state is s and
that she is not giving a best-response offer to the sample picked, and define ws(y | s) analogously.
Assume ε > 0 and that wb(x | s), ws(y | s) have full support.

This process also yields a stationary Markov chain on S that can be described by the probability
of moving from a state s to a successor state s′, similarly to equation (1) above. Assume that the
process starts at an arbitrary time t0 > n ·m, and denote the initial state by s0. At each t > t0

one pair of agents (b, s) ∈ B × S is drawn at random with probability π(b, s), where π(b, s) > 0,
∀(b, s) ∈ B × S. Let s be the state at time t, and let s′ be a successor of s, where s and s′ are
defined above. The transition probability P εss′ of moving from state s to state s′ is then equal to:

P εss′ =
∑
b∈B

∑
s∈S

π(b, s)[(1− ε)2qb(xt+1 | s)qs(yt+1 | s) + ε2wb(xt+1 | s)ws(yt+1 | s)]+

+ ε(1− ε)wb(xt+1 | s)qs(yt+1 | s) + ε(1− ε)ws(xt+1 | s)qb(yt+1 | s) (2)

The limit of the perturbed process is clearly the unperturbed one: limε→0 P
ε
ss′ = Pss′ .
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3 Equilibrium analysis

This section presents the results of the equilibrium analysis. Section 3.1 shows that the process
without mistakes converges to a convention as long as the network is not complete. Section 3.2 de-
rives the stochastically stable division and analyzes its relation with the network structure. Section
3.3 characterizes the desirable communication network structure for the members of a group and
discusses the relevance of this result to a long-standing debate in the sociology literature.

3.1 Convergence

First, consider the unperturbed process P . The first step in the analysis is to define an appropriate
concept of stability for this system, and to show that in the long-term the process will reach it.
Intuitively, the system will be in a stable state if after a certain time t any buyer will always make
the same demand x because the sellers have always demanded 1− x, and vice versa for the sellers.
The following definition states this more formally.

Definition 3. A state s is a convention if any vi ∈ s with i ∈ B is such that vi = (1−x, ..., 1−x),
and any vj ∈ s with j ∈ S is such that vj = (x, ..., x), where 0 < x < 1. Hereafter, denote this
convention by x.

It is straightforward to see that the convention x is an absorbing state of P . If a buyer receives
a sample in which all sellers’ demands are equal to 1 − x then she will demand x. Similarly, if a
seller receives a sample in which all buyers’ demands are equal to x then he will demand 1 − x.
Clearly, this will go on forever so x is an absorbing state of P .

Lemma 1. Every convention x is an absorbing state of the Markov process P in (1).

The following theorem shows that if information about the history of play is sufficiently incom-
plete then the process P converges to a convention. The incompleteness of information is delivered
by the network structure: if the network is not complete then some agents do not receive information
on past demands in rounds played by individuals that do not belong to their neighborhoods.

Theorem 1. Assume both gB and gS are connected and they are not complete networks. The
bargaining process converges almost surely to a convention.

The example networks in Figure 2 help understanding the intuition behind the proof. The
goal is to show that from any initial state s there is a positive probability p independent of t of
reaching a convention within a finite number of steps. The assumption that gB is not a complete
network implies that there are at least two agents b′ and b′′ such that gb′b′′ = 0. Moreover, given
that gB is connected, there are at least two agents like b′ and b′′ such that the intersection of their
neighborhoods includes at least one agent b. The same applies to the sellers’ network, where agents
s and s′′ are the equivalent of agents b′ and b′′ respectively.

Now, consider the following path which happens with positive probability from any state s
at time t. First, b and s are picked to play the game for m periods, they draw samples σ and
σ′ respectively, they demand best-replies x and y respectively, and therefore we have a run ξ =
{(x, y), ..., (x, y)} such that vb = (y, ..., y) and vs = (x, ..., x). Second, b′ and s′ are picked to play
the game for m periods, they draw samples from vb and vs each time, they demand best-replies
1− y and 1−x respectively, and therefore we have a run ξ′ = {(1− y, 1−x), ..., (1− y, 1−x)} such
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Figure 2: Example networks of buyers (left) and sellers (right). Gray-colored nodes are mentioned
in the text to give intuition about the proof.

that vb′ = (1−x, ..., 1−x) and vs′ = (1−y, ..., 1−y). Third, b′′ and s′′ are picked to play the game
for m periods, they draw samples from vb and vs′ each time, they demand best-replies 1 − y and
y respectively, and therefore we have a run ξ′′ = {(1− y, y), ..., (1− y, y)} such that vb′′ = (y, ..., y)
and vs′′ = (1 − y, ..., 1 − y). Hereafter it is clear that there is a positive probability of reaching a
convention x = (1− y, y).

Theorem 1 in Young [1993b] proves adaptive play converges almost surely to a convention
in any weakly acyclic game with n agents as long as information is sufficiently incomplete. In
Young [1993b]’s the incompleteness of the information is given by bounds on the size of the sample
the agents can draw to base their play on. Here the incompleteness of information is given by the
network structure: if the network is not complete there will be agents who cannot sample some past
rounds because they were played by agents in their group with whom they do not communicate.7

Section 7 extends the model to a setting where indirect communication is allowed so that agents
receive information from friends of their friends up to a social distance r. The statement of the
theorem extends naturally to this setting: if there are at least two agents at a distance higher than
r then there is convergence to a convention. The rationale is the same: there is incompleteness of
information because at least two agents are not able to sample the whole history of past demands.
Clearly, Theorem 1 above is the special case for r = 1.

3.2 Network structure and the market outcome

Theorem 1 proves that the system converges to a stable division, but any division is a potential
solution so it is silent on how the stable outcome depends on the structure of the groups and the
preferences of the agents. In order to make progress in this direction, one needs to consider the
perturbed process P ε. Given that the distributions wb and ws have full support, P ε is irreducible.
Thus, P ε has a unique stationary distribution. Moreover, P ε is strongly ergodic, i.e. ∀s ∈ S, µεs is
with probability one the relative frequency with which state s will be observed in the first t periods
as t → ∞. A well-known stability concept for this kind of perturbed process is a stochastically
stable convention by Foster and Young [1990].

7It is straightforward to extend this argument and therefore the result of Theorem 2 to a set-up where agents are
heterogeneous in their risk-aversion.
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Definition 4. A convention s is stochastically stable if limε→0 µ
ε
s > 0. A convention s is strongly

stable if limε→0 µ
ε
s = 1.

Intuitively, in the long-run stochastically stable conventions will be observed much more fre-
quently than unstable conventions when the probability ε of mistakes is small. A strongly stable
convention will be observed almost all the time. In order to compute the stochastically stable con-
vention, one can construct a weighted, directed network [rsisj ]

k×k, where the nodes are the states
s ∈ S, the links are the resistances rsisj connecting si to sj , and k is the total number of states
in S. Define an x-tree tx ∈ Tx to be a collection of links in [rsisj ]

k×k such that, from every node
x′ 6= x, there is a unique directed path to x and there are no cycles. The stochastic potential γ(x)
of a convention x is the least resistance among all tx ∈ Tx. Let µ0 be a stationary distribution of
the unperturbed process P , so limε→0 µ

ε
s = µ0. Theorem 4 in Young [1993b] proves that µ0 > 0,

i.e. s is stochastically stable, if and only if s = x is a convention and γ(x) has minimum stochastic
potential among all conventions.

The methodology outlined above can be applied to find the division which the process will
converge to. Define Bmin = {j ∈ B | dzj(gB)e ≤ dzb(gB)e,∀b ∈ B} to be the subset of buyers with
the least weighted degree. Let zminb (gB) = dzj(gB)e for j ∈ Bmin. Equivalent definitions apply to
the sellers. The first step is to compute the minimum resistance to moving from the convention x
to the basin of a different convention x′. This is done in the following lemma.

Lemma 2. The minimum resistance to moving from x to a state in some other basin is dR(x)e,
where:

R(x) = min

{
zminb (g)

(
1− u(x− δ)

u(x)

)
, zmins (g)

v(1− x)

v(1− δ)
, zmins (g)

(
1− v(1− x− δ)

v(1− x)

)}
(3)

The intuition is as follows. Some agents have to make mistakes in order for the system to move
from one convention to a state in the basin of another convention. The agents who will switch with
the least number of mistakes in their sample are the ones who receive the smallest samples. This
explains the factors zminb (g) and zmins (g) in equation (3). Now, consider the case when some sellers
make a mistake. The smallest mistake they can make is to demand a quantity δ more than the
conventional demand 1− x. If they do this, buyers will attempt to resist up to the point when the
utility from getting the conventional amount x some of the time, i.e. when sellers do not make a
mistake, is equal to the utility from getting the lower amount x−δ all the time. This gives the first
term in equation (3). The third term is the equivalent of the first one, but this time the buyers
make a mistake and demand δ more than the conventional amount x.

Another possibility is that some buyers make a mistake, but this time they demand less than
the conventional amount x. The “worst” mistake, from the buyers’ point of view, would be to
demand the minimum amount δ. If they do this, sellers will only switch at the point when the
utility from getting the higher amount 1− δ some of the time, i.e. when buyers make a mistake, is
higher than the utility from getting the conventional amount x all the time. This gives the second
term in equation (3). There should also be a fourth term, i.e. the equivalent of the second one with
the roles of buyers and sellers reversed, but it is not included in equation (3) because it is never
strictly smaller than the last term.

The expression for R(x) in (3) is the minimum of three monotone functions: the first two are
strictly decreasing in x, while the last one is strictly increasing in x. Thus, R(x) is first strictly
increasing and then strictly decreasing as x increases, so it achieves its maximum at a unique value
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x∗.8 Using this fact, the following theorem shows that there is a unique stable division, which is
the asymmetric Nash bargaining solution with weights that depend on the agents in each group
with the least weighted degrees.

Theorem 2. There exists a unique stable division (x∗, 1 − x∗). It is the one that maximizes the
following product:

uz
min
b (x)vz

min
s (1− x) (4)

In other words, it is the asymmetric Nash bargaining solution with weights zminb (gB) and zmins (gS).

If the precision δ is sufficiently small then over time the two groups will settle on a conventional
division, which is the asymmetric Nash bargaining solution. This solution crucially depends on
the communication networks that buyers and sellers use to learn about past bargaining rounds
to determine what to demand once they are picked to play. More precisely, ceteris paribus (i.e.
agents’ risk-aversion in the two groups is the same), the division depends on the agents in the group
with the least number and/or weakest communication links.9 The intuition is that these agents
will be the least informed when it comes to play the game, and therefore they will be the most
susceptible to respond to mistakes from the other side. Over time, this susceptibility weakens the
bargaining position of the whole group. Obviously, as in standard bargaining models, the solution
also depends on the utilities of the agents. Ceteris paribus (i.e. the least connected agents in each
group have the same weighted degree), a group with less risk-averse agents will have a stronger
bargaining position because these agents are more likely to take chances, and therefore they are
more demanding.

The proof of the theorem follows from two lemmas from Young [1993a]. The first lemma shows
that a division (x, 1 − x) is generically stable if and only if x maximizes the function R(x) in
equation (3). The second lemma shows that the maxima of R(x) converge to the asymmetric Nash
bargaining solution which maximizes the product in (4). This solution is clearly analogous to the
one in Theorem 3 in Young [1993a]. The key difference is that the solution in Theorem 2 above
depends explicitly on the internal communication structure of the groups of buyers and sellers.
This allows the derivation of the comparative statics results in Corollary 1, which relate changes in
network structure to variations in the equilibrium division in an intuitive way. Moreover, section
7 extends the model to a setting where indirect communication is allowed and reveals a richer
dependence of the equilibrium division on the network structure. Specifically, in the extended
model the statement of Theorem 2 is unchanged except for the weights that are now determined by
the agents with the smallest decay r-centrality, a metric that captures the number and/or strength
of connections in their extended neighborhood up to a distance r.

A standard and intuitive tool to analyze the effects of changes in the network structure is to
look at first order stochastic dominance (FOSD) and second order stochastic dominance (SOSD)
shifts in the degree distribution. The weighted degree distribution of a network is a description of
the relative frequencies of agents that have different degrees. Let p(z) denote the weighted degree
distributions of network g, i.e. the fraction of nodes that have weighted degree z in network g, and
let µ[p(z)] denote the mean of the distribution. The following are more formal definitions of these
notions.

8Technically, R(x) can achieve its maximum at one value x∗ or at two values x∗ and x∗ + δ. As δ → 0 these two
values clearly converge to a unique maximum x∗.

9It is straightforward to extend the result of Theorem 2 to a set-up where agents are heterogeneous in their
risk-aversion, see Young [1993a].
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Definition 5. A distribution p′ first order stochastic dominates (FOSD) another distribution p if
ρ′(x) ≤ ρ(x) for any x ∈ [0, Z], where ρ(x) =

∑x
z=0 p(z) is the cumulative distribution of p(z). The

FOSD shift is variance-preserving if V ar[p(z)] = V ar[p′(z)].

Definition 6. A distribution p′′ strictly second order stochastic dominates (SOSD) another dis-
tribution p if

∑x
z=0 ρ

′′(z) ≤
∑x

z=0 ρ(z) for any x ∈ [0, Z]. The SOSD shift is mean-preserving if
µ[p(z)] = µ[p′′(z)].

If p′(z) FOSD p(z) then a network g′ is denser than a network g. Note that in the context of
weighted networks denser means that agents in g′ have on average a higher number and/or stronger
links than agents in g. If p′′(z) SOSD p(z) then a network g′′ is more homogeneous than a network
g. Similarly, more homogeneous means that there is less variability across agents in g′′ in terms
of the number and/or strength of their connections than across agents in g. We can use this tool
to gain further intuition of how the result of Theorem 2 relates the structure of the network to
the equilibrium division. The following corollary to Theorem 2 shows how the asymmetric Nash
bargaining solution (ANB) varies with changes in the degree distributions of the buyers and sellers’
networks.

Corollary 1. Let (x∗, 1 − x∗) be the ANB for sets of agents B and S that communicate through
networks gB and gS with weighted degree distributions pb(z) and ps(z). Consider the weighted degree
distributions p′b(z) and p′′b (z) of networks g′B and g′′B respectively, and let p′b(z) FOSD pb(z) and
p′′b (z) SOSD pb(z).

(i) Let (x
′∗, 1− x′∗) be the ANB for sets of agents B and S with degree distributions p′b(z) and

ps(z). Then x
′∗ ≥ x∗.

(ii) Let (x
′′∗, 1 − x′′∗) be the ANB for sets of agents B and S with degree distributions p′′b (z)

and ps(z). Then x
′′∗ ≥ x∗.

The same statement holds reversing the roles of buyers and sellers.

The corollary states that individuals who belong to a denser social group, i.e. with more
numerous and/or stronger connections, will fare better. Similarly, individuals who belong to a
more homogeneous social group, i.e. with more equally distributed connections in terms of the
number and/or strength of links, will also be better off. The intuition is that agents in these groups
will have access to more information about past deals experienced by other members in their group.
Thanks to this informational advantage, they are less likely to respond to mistakes by the other
side, and they are therefore able to maintain an advantageous bargaining position.

Finally, only mild assumptions are required to extend the model to a context with several groups
of buyers. Assume that there is one group of sellers and that there are k separate groups of buyers
such that buyers communicate within their group but not across groups.10 The main assumption
that is required is that each seller knows which group a buyer belongs to and he only receives
information from other sellers on previous transactions with buyers from that group. Moreover,
when a seller determines which offer to make to a buyer from a certain group, he does not use
information from transactions with buyers in other groups. Mathematically, the whole system can
be represented by k different processes that run “in parallel,” and the dynamics/outcomes of one
process are completely independent from the ones of the other processes. Clearly, the results in
this paper apply to each one of these processes. The following corollary presents this set-up more
formally and it states its implications.

10An equivalent set-up is to assume that there is one group of buyers B connected by a network gB which is
composed of k components.
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Corollary 2. Consider one group of sellers S who communicate through gS, and k groups of buyers
B1, ..., Bk who communicate through separate networks g1, . . . , gk with weighted degree distributions
p1(z), . . . , pk(z) respectively. Assume Bi ∩ Bj = ∅ and sellers know which group a buyer b belongs
to. Then sellers will reach different conventions with different groups of buyers on the share x∗i that
buyers in Bi get. Moreover:

(i) If p1(z) FOSD p2(z) FOSD . . . FOSD pk(z), then x∗1 ≥ x∗2 ≥ . . . ≥ x∗k
(ii) If p1(z) SOSD p2(z) SOSD . . . SOSD pk(z), then x∗1 ≥ x∗2 ≥ . . . ≥ x∗k

This corollary states a clear and testable prediction of the model: in a market with different
groups of buyers where communication only occurs within groups, buyers that belong to denser
and/or more homogeneous groups will fare better. Sections 4 and 5 investigate the validity of these
predictions in an experimental setting.

3.3 The weakness of weak ties

What is the desirable communication structure for the members of a group of individuals that
engage in this bargaining process with another group? In order to answer this question, it is useful
to define a class of quasi-regular networks, which are generated by a given regular network.

Definition 7. Consider the set G of undirected networks with n nodes and at most L links. Let
gd,a be a regular network with degree d =

⌊
2L
n

⌋
and link strength a, i.e. it belongs to gd,a which is

the class of largest regular networks in G. The network g ∈ G is a quasi-regular network generated
by gd,a if it can be obtained by randomly adding k links of any strength to gd,a, where k ∈ [0, L− n

2 ).

A quasi-regular network is a network that is similar to a regular network in the sense that the
links are distributed evenly among the nodes and there is minimal degree variation. Note that
if L/n ∈ N, i.e. the links can be exactly divided among the nodes, then the set of quasi-regular
network coincides with the class of regular networks gd,a. If L/n /∈ N then each node has at
least as many links as in the generating regular network, and the remaining links are randomly
assigned. The following corollary shows that the desirable communication structure for a group is
a quasi-regular network.

Corollary 3. Fix a communication network gS for the sellers. Consider the set G of all possible
communication structures gB among the nB buyers such that the total number of links is L <
nB
2 (nB − 1) and the strength of each link is in the [s, s] range, where s, s ∈ R+. The subset of

networks GB ⊂ G that gives the highest share to buyers are the quasi-regular networks generated by

regular networks in gd,s, where d =
⌊
2L
nB

⌋
. The same statement holds reversing the roles of buyers

and sellers.

For illustrative purposes it is easier to give the intuition for the case where L/nB ∈ N. First, the
desirable network must have communication links of maximum strength because they carry more
information about past rounds, decreasing in this way buyers’ susceptibility to sellers’ mistakes.
Second, a regular network is desirable because it is the network where the buyers with the lowest
degree have the highest possible degree given the constraint L. Informally, (quasi-)regular networks
are very steady: they have no weak points that could be more susceptible to sellers’ mistakes.

There is a long-standing debate in the sociological literature on what constitutes a desirable
network for a group of individuals. A seminal paper by Granovetter [1973] introduced the idea
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that weak ties play an important role in networks because they connect individuals with few char-
acteristics in common and that have non-overlapping neighborhoods, allowing them to access non-
redundant information. For instance, Granovetter [1995] shows that individuals with many weak
ties are better at finding employment through their social networks. A rough summary of this view
is that networks with a significant fraction of weak ties and high degree variability are desirable
because they facilitate the flow of information.

On the other hand, Coleman [1988] argues that close-knit, homogeneous networks formed by
strong bonds are desirable. The rationale is that these strong connections and their even distribution
across all group members make it easier to establish an informal, decentralized monitoring of the
flow of information. Moreover, there are no peripheral individuals who could be potential defectors.
He gives the example of the network of wholesale diamond traders in New York: strong family,
religious and community ties ensure that information about any cheating will be quickly available
to all the members leading to the exclusion of the cheater from the community. A rough summary
of this view is that networks composed exclusively by strong ties and minimal degree variability
without peripheral individuals are desirable because they facilitate monitoring of what is going on
in the network.

In the context described by this model, Corollary 3 shows that Coleman-type, quasi-regular
networks exclusively formed by strong ties are desirable because they allow the effective sharing of
information about past demands. However, it is important to understand that this is not an absolute
statement about the two views, which are, in fact, complementary. There are two key aspects of
this model which determine the desirability of a Coleman-type network in this context. First, the
new information that circulates in the network is negative: mistakes made by the other side that
individuals in the group should not respond to. Second, the final outcome is the establishment
of a norm for the whole group, so the important factor is how structural properties of the group
as a whole, not the structural position of single agents, influence the outcome. A regular network
with strong ties ensures that each agent has a lot of information about the state of the system so
that new negative information has a very low probability of affecting the group. Moreover, the
regularity of the networks ensures that there are no weak points where negative information has a
higher probability of “entering” the group. On the other hand, in a model where new information
is positive and valuable (e.g. innovation, job opportunities) then the desirable network would
probably be closer to the Granovetter’s type because it would facilitate the effective circulation of
positive information.

4 Experiment: Design

The experiment was run at the Center for Experimental Social Sciences (CESS) at Nuffield College
(University of Oxford). It consisted of 16 experimental sessions and each session lasted about
40 minutes. In total, 312 subjects participated in the experiment. There were 5 sessions with
24 subjects, 10 sessions with 18 subjects, and 1 session with 12 subjects.11 The subjects were
mainly undergraduate (48.7%) and graduate (36.3%) students at the University of Oxford, and the
average age was 23.2 years old. Payoffs were calculated in vouchers and each voucher was worth

11The number of participants per session had to be a multiple of 6 because subjects are randomly assigned to
groups of 6 (see below for details). If a number of subjects different from {12, 18, 24} showed up then the subjects
who arrived last received a show-up fee and did not participate in the experiment. Subjects were alerted about this
possibility in the invitation email to sign up for the experiment.
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Figure 3: An illustration of what the subjects see on their screen during a trading round.

11p. The average earning for a subject was approximately £7 and each subject was paid in private
by a research assistant at the end of each session. The experimental instructions are available in
Appendix C.

At the beginning of each session subjects were randomly assigned to workstations which were
partitioned to ensure anonymity and the effective isolation of subjects. There was a copy of the
experimental instructions at each workstation and the experimenter started reading them after all
subjects were seated. The first part of the instructions describes the Nash demand game. Subjects
were told that they will be traders in a market and that they will be trading with a seller played
by a computer. At each trading round there are 17 vouchers at stake: if the sum of the subject and
the seller’s demands is greater than 17 the subject gets 0 vouchers, otherwise she gets the number
of vouchers she demanded.

After the explanation of the Nash demand game, the subjects are told that they are divided into
groups and the experimenter explains the trading procedure. They are shown the representation
in Figure 3 of what they will see on their computer screen. Subjects have 15 seconds in each
trading round and the first line at the top of their screen is a time counter that tells them how
long they have left. At the center of the screen they have information about the demands made
by the seller in past transactions with the other buyers that they are connected to. The other
buyers are denoted by fictitious initials to preserve anonymity. In the example in Figure 3, the
seller has demanded 9, 11, 17 vouchers in previous transactions with buyer F.G. and 8 vouchers in
one previous transaction with seller A.T. The bottom left panel reminds subjects that there are 17
vouchers at stake, which does not change throughout the experiment. In the bottom right panel
subjects can input their demand for this trading round. Note that they are only able to input the
demand after the time counter has reached 10 seconds left.

After a subject has entered her demand x and all other subjects in her group have entered
their demand, a new screen appears that tells the subject one of these 3 outcomes: she has won
x vouchers, she has won 0 vouchers because the sum of her demand and the seller’s demand was
more than 17, or she has won 0 vouchers because she did not input a demand.12 Subjects are told
that there will be 50 trading rounds, and that at the end of the experiment 6 trading rounds will
be selected at random for payment: the vouchers earned in those trading rounds are converted into

12Subjects failed to input a demand only in 0.001% (30 out of 15, 630) of the trading rounds.
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pounds using an exchange rate of 1 voucher = 11p.
Subjects are also told that the computer, which is the seller, will try to earn as many vouchers

as possible in the trading and that it will determine its demand based on the previous history of
trading with members of the subject’s group.13 The computer seller follows the following algorithm
to determine the demand it makes to a subject i: it samples 8 past demands made by members of
i’s group among all the demands they made in the last 6 rounds, and it makes a demand which is
a best response to this sample with 95% probability and it demands an amount at random with
5% probability.

At the end of the instructions the experimenter asks whether there are any questions. After
all questions have been answered, the experimenter announces that trading starts and that after
3 trading rounds it will be stopped to allow subjects to clarify any remaining doubts. After all
questions have been answered trading resumes and continues without interruptions until the 50th
round. At the end of the trading subjects had to fill in a questionnaire and took a modified version
of the incentivized test in Holt and Laury [2002] to generate their risk preferences.

There are 4 treatments in the experiment and the only difference across treatments is the
network that allowed communication among subjects. Figure 4 illustrates the 4 networks used in
the experiment: a regular network of degree 4 (R4), a circle network (C1), a star network (ST ) and
a circle with spokes network (C2). As it is clear from Figure 3, subjects did not know the network
that they were assigned to and they could only see the people that they were connected to (with
fictitious names to ensure anonymity). In all the networks the links are unweighted.

Figure 4: Networks used in the experiment. From left to right: regular network of degree 4 (R4),
circle network (C1), star network (ST ), and circle MPS network (C2), which is a mean-preserving
spread of the circle network.

All the theoretical results presented in section 3 apply after the system has converged to a stable
state. Thus, it is necessary to check that the trading markets have converged before comparing the
outcomes across treatments. This leads us to our first hypothesis:

H1: Subjects assigned to the same group converge to demand the same number of vouchers at the
end of the trading market, independently of the treatment they are assigned to.

The results of Theorem 2 and Corollary 1 allow us to formulate clear hypotheses on the dif-
ferences in what subjects demand across treatments. In both treatments R4 and C1 subjects are
symmetric in terms of the number of connections that they have. This means that every subject
is crucial to determine the equilibrium split because every subject has the least number of connec-
tions in the network. However, a subject in R4 has double the number of connections of a subject
in C1 so the R4 network first order stochastic dominates the C1 network and by Corollary 1 we

13See Appendix C for the exact wording, which is similar to the one used by Johnson et al. [2004] in a different
experiment which involved a bargaining game between subjects and a computer.
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hypothesize that subjects in R4 demand more vouchers after convergence. Similarly, any subject
in R4 has more connections than the least connected subjects in ST and C2 so by Theorem 2 we
hypothesize that subjects in R4 demand more vouchers after convergence. In summary, we have:

H2: Subjects in the R4 treatment demand more vouchers (after convergence) than subjects in the
C1, C2 and ST treatments.

As mentioned above, subjects in C1 are symmetric in terms of the number of connections:
everyone has two connections. The C2 network has the same total number of connections of the
C1 network, but subjects are asymmetric in the number of connections they have. Thus, C1 second
order stochastically dominates C2, and therefore by Corollary 1 we hypothesize that subjects in C1
demand more vouchers (after convergence) than subjects in C2. Similarly, all but one subjects in
ST have only one connection so we hypothesize that subjects in C1 demand more vouchers (after
convergence) than subjects in ST . In summary, we have:

H3: Subjects in the C1 treatment demand more vouchers (after convergence) than subjects in the
C2 and ST treatments.

Finally, the ST and C2 networks have rather different structural properties. The C2 network
has 3 types of subjects with one, two and three connections, and it has a higher total number of
connections than the ST network. The ST network has a very uneven distributions of connections
with one subject who is connected to everyone else and no other connection in the network. How-
ever, the result of Theorem 2 predicts that there should be no difference between the number of
vouchers that subjects demand (after convergence) between the two treatments because in both
networks the least connected subjects have the same number of connections (i.e. one):

H4: Subjects in the C2 and ST treatments demand the same number of vouchers (after conver-
gence).

The statement of Theorem 2 also implies that after convergence there will be no difference across
subjects in the same network with regard to the number of vouchers that each one of them demands.
In other words, the overall structure of the network determines the split, but the structural position
of each subject does not determine what that subject demands compared to others in a different
structural position in the network. We can test this predictions in the ST and C2 treatments where
subjects have asymmetric structural positions in the network. This leads to two further hypotheses:

H5: In the ST treatment, the subject at the center of the star network demands the same number
of vouchers (after convergence) as the subjects assigned at the periphery.

H6: In the C2 treatment, the subjects demand the same number of vouchers (after convergence)
independently of their position in the network.

Aside from the network structure, which is our main interest, Theorem 2 also makes the intuitive
prediction that subjects who are less risk-averse should demand more vouchers. This leads to a
further hypothesis to help to validate the theoretical results.

H7: In all treatments the subjects’ risk aversion is inversely correlated with the number of vouchers
they demand.
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Table 1: Summary statistics and pairwise correlations for some of the main variables.1

n Mean s.d. 1 2 3 4 5 6 7

1. Gender1 312 0.54 0.50 1.00
2. Age 312 23.20 4.86 0.04 1.00
3. Trust2 309 0.54 0.50 0.06 0.02 1.00
4. Risk3 310 5.92 1.81 −0.21∗∗∗ -0.00 0.09 1.00
5. HL4 274 4.19 2.82 −0.12 0.02 0.05 0.34∗∗∗ 1.00
6. Memory5 312 6.49 2.25 −0.14∗ -0.07 0.12 0.14∗ 0.16∗ 1.00
7. Comp. 312 6.34 2.35 −0.21∗∗ -0.02 0.10 0.14∗ 0.03 0.60∗∗∗ 1.00
8. Social 312 6.35 2.06 0.15∗ -0.06 0.20∗∗∗ 0.16∗∗ 0.04 0.15∗ 0.03

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. 1. Female= 1. 2. General trust question with 0 =“Need to be very careful” and
1 =“Most people can be trusted”; three participants did not answer the question. 3. General risk attitude question
with 1−10 scale where 1 =“not at all willing to take risks” and 10 =“very willing to take risks”; two participants did
not answer the question. 4. Holt and Laury [2002]’s risk attitude test: 13 participants did not answer the question,
25 participants are excluded because they made at least one inconsistent choice (i.e. multiple switching points). 5.
Variables 6, 7 and 8 are from general questions on participants’ self-perception of their ability to (6) memorize and
recall numerical information, (7) perform computations, and (8) spend a significant amount of their free time doing
social activities with other people.

5 Experiment: Results

This section presents the results of the experiment. Section 5.1 describes the subject pool. Section
5.2 carries out a convergence analysis of subjects’ decisions in all experimental sessions. Section
5.3 contains the analysis of the experimental data.

5.1 Sample description

The experimental data contains the decisions of 312 subjects. Each subject participated in one
treatment so she played the game in one of the four network structures. We ran each treatment 13
times so we have 78 subjects that played the game on a given network structure and 13 independent
observations per treatment. There are 50 rounds in each game so we have a total of 15, 600 demand
decisions or observations. The experimental data was matched with the data from the questionnaire
that subjects had to fill in at the end of the experiment.

Table 1 summarizes some of the most important variables in the sample and their pairwise
correlation: 55.8% of the subjects were female, the average age was 23.2 years old and 55.7%
believe that others can be trusted, which is higher than the average value from the World Values
Survey (WV S) of the UK population. The level of trust is not correlated with gender or age.

After the questionnaire, subjects took a Holt and Laury [2002] risk attitude test. For each of
8 scenarios they had to pick between a certain win of £5 and a lottery with expected outcome
x, where x varied from £15 for scenario 1 to £8 for scenario 8. A risk-neutral participant would
be indifferent between the two choices at scenario 6 where the lottery gives £5 in expectation.
The participants are on average risk-averse because the mean switching point is 4.27, which is
equivalent to an expected lottery value of £11.73.14 The results of the test have a highly significant

14This includes participants who always chose the certain option (62; coded as 0) and who always chose the lottery
(18; coded as 9). If we exclude these participants, the mean switching point is 5.22, which is equivalent to an expected
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positive correlation with the participants’ self-perception of their attitude toward risk on a 1-10
scale. Female subjects are on average more risk-averse, although this is significant only for the
self-reported measure of risk.

Subjects were also asked for their self-evaluation of their general ability at memorising and
recalling numerical information (memory), performing computations without the aid of a calcu-
lator and without pen and paper (computation), and whether they spend a significant amount of
their free time doing social activities with other people (social). Memory and computation have a
highly significant positive correlation, and memory and social have a significant positive correla-
tion. Females tend to report a worse memory on average, and memory has a significant positive
correlation with both risk metrics. Females tend to report a worse computation ability on average,
and comnputation is positively correlated with both risk metrics, although the correlation is only
significant for the self-reported one. The tendency to be social has a significant positive correlation
with the level of trust.

5.2 Convergence

The comparative statics predictions derived in section 3.2 apply once the system has converged to
a stable state so the first step in the analysis of the experimental data is to show that H1 holds:
the experimental markets reach a stable outcome. In the context of the experiment, I adopt the
following definition of convergence:

Definition 8. A group converges to a convention x if

(i) at least 5 out of 6 subjects make the same demand x for at least 4 consecutive rounds, and

(ii) afterward it never occurs that more than 2 subjects do not demand x for more than 2 con-
secutive rounds.

A market has achieved “convergence” if requirement (i) applies: at least 5 out of 6 subjects
make the same demand x for at least 4 consecutive rounds. I do not require that all 6 subjects
make the same demand because this would not be consistent with our model in which agents are
allowed to make mistakes and therefore may sometimes demand a different amount even after the
process has converged. A market has achieved “stable convergence” if both requirements (i) and
(ii) apply so that after convergence it never occurs that more than 2 subjects do not demand x for
more than 2 consecutive rounds. Note that these definitions are significantly more demanding in
comparison to other studies.15 Table 2 summarizes the results.

In 83% (43 out of 52) of the markets the subjects achieved convergence to the same demand with
no significant difference across treatments in probability of convergence. On average they achieved
convergence after 33 out of 50 rounds with no significant difference across treatments. There is
significant variability in the number of rounds needed to achieve convergence across markets, but
no significant difference across treatments.

The results are unchanged if one looks at the stricter requirement of stable convergence. Only
7% (3 out of 43) of the markets that achieve convergence do not achieve stable convergence, i.e. in

lottery value of £10.78, which still implies that participants are on average risk-averse.
15For instance, Rosenkranz and Weitzel [2012] define convergence as staying in the same equilibrium for at least

three consecutive periods, and Goeree et al. [2009] define convergence as staying in the same equilibrium for at least
one round.

21



Table 2: Frequency of convergence by treatment.

(i) Convergence (i) and (ii) Stable convergence

Network Number of Mean Mean Number of Mean Mean
treatment markets round demand markets round demand

R4 11/13 33.4 11.2 11/13 33.4 11.2
C1 11/13 34.6 11.0 11/13 34.6 11.0
ST 10/13 30.8 10.4 8/13 34 10.6
C2 11/13 32.8 10.5 10/13 33.2 10.5

Total 43/52 33.0 10.8 40/52 33.8 10.9

the large majority of markets once the subjects have converged to a demand they tend to continue
asking the same demand. Two out of the three markets that do not stabilize are star network
treatments. On average they achieve stable convergence after 33.8 rounds with no significant
difference across treatments.

In summary, hypothesis H1 is validated in the majority of experimental markets: after 50
rounds the majority of groups converge to demand the same number of vouchers and do not change
this demand, and this is independent of the network that they are assigned to.

5.3 Network structure and the market outcome

Before a full investigation of the dynamics of play, it is illustrative to inspect subjects’ average
demand across treatments. Table 3 shows the differences in subjects’ average demands in the last
10 rounds of play between pairs of networks.16

Table 3: Impact of network structure on average buyer demand.

Row minus column network

C1 ST C2

R4 0.42 1.17∗∗ 1.05∗

C1 0.75∗∗ 0.63
ST −0.12

Each entry indicates the difference in average demand in the last 10 rounds between subjects assigned to the treatment
in the row and column network. Significance levels refer to Mann-Whitney tests on aggregated data at the session
level for the last 10 rounds∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

There are significant differences across networks, which are in agreement with the theoretical
predictions. As stated in H2, subjects in the R4 network converge to demand an average number
of 11.5 vouchers, which is qualitatively higher than the average for the C1 network (= 0.42), and
significantly higher than the averages for the ST (= 1.17) and C2 (= 1.05) networks. There is
also a qualitative difference in the average number of vouchers demanded between the C1 and C2
networks (= 0.63) and a significant difference between the C1 and ST networks (= 0.75), which are
in the direction predicted by H3. Finally, there is no difference between the ST and C2 treatments,
as predicted by H4.

16The results and their significance levels are unchanged if we analyze the last 5 rounds.
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Table 4: Impact of network structure on buyer demand.

Dep. var.: demand (1) (2) (3) (4) (5) (6)

R4 0.413 0.735∗∗ 0.495 1.047∗∗∗

(0.321) (0.304) (0.384) (0.391)

C1 -0.413 0.321 -0.495 0.552∗

(0.321) (0.258) (0.384) (0.329)

C2 -0.735∗∗ -0.321 -1.047∗∗∗ -0.552∗

(0.304) (0.258) (0.391) (0.329)

ST -0.845∗∗∗ -0.431∗ -0.110 -1.248∗∗∗ -0.753∗∗ -0.201
(0.264) (0.252) (0.228) (0.355) (0.328) (0.333)

Risk (Holt-Laury) 0.0438∗∗ 0.0438∗∗ 0.0438∗∗ 0.0495∗∗∗ 0.0495∗∗∗ 0.0495∗∗∗

(0.0185) (0.0185) (0.0185) (0.0171) (0.0171) (0.0171)

Age -0.0180∗ -0.0180∗ -0.0180∗ -0.0207∗∗ -0.0207∗∗ -0.0207∗∗

(0.00973) (0.00973) (0.00973) (0.0101) (0.0101) (0.0101)

Gender -0.233∗∗ -0.233∗∗ -0.233∗∗ -0.160 -0.160 -0.160
(0.109) (0.109) (0.109) (0.121) (0.121) (0.121)

Trust 0.0340 0.0340 0.0340 0.0153 0.0153 0.0153
(0.0999) (0.0999) (0.0999) (0.0900) (0.0900) (0.0900)

Memory -0.0430 -0.0430 -0.0430 -0.0472 -0.0472 -0.0472
(0.0364) (0.0364) (0.0364) (0.0331) (0.0331) (0.0331)

Computations 0.0467 0.0467 0.0467 0.0454 0.0454 0.0454
(0.0352) (0.0352) (0.0352) (0.0304) (0.0304) (0.0304)

Social Activities -0.0362 -0.0362 -0.0362 -0.0408 -0.0408 -0.0408
(0.0233) (0.0233) (0.0233) (0.0281) (0.0281) (0.0281)

Constant 11.1766∗∗∗ 10.7634∗∗∗ 10.4419∗∗∗ 12.2963∗∗∗ 11.8017∗∗∗ 11.2498∗∗∗

(0.3891) (0.3837) (0.3768) (0.4851) (0.4824) (0.5119)

Observations 15600 15600 15600 5304 5304 5304
R2 0.1245 0.1245 0.1245 0.2269 0.2269 0.2269
χ2 79.18 79.18 79.18 75.18 75.18 75.18

GLS panel estimation with random effects per subject and standard errors clustered at the network level.

All specifications include trading round as a trend control and session fixed effects.

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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I investigate the validity of the hypotheses further by running a series of GLS panel estimations
with subject’s demand as the dependent variable and standard errors clustered at the group (i.e.
network) level. I include random effects at the subject level, as well as controls for basic demo-
graphics (age, gender), attitudes toward risk as measured by the standard Holt-Laury test, and
self-reported metrics of trust, memorizing ability, socialisability, and ability to perform numerical
computations. In addition, I use the trading round as a trend control and also specify 15 session
fixed effects.

Columns (1)-(3) in Table 4 analyze the whole sample of data so they include subjects’ demands
before convergence in markets that have reached a stable outcome and subjects’ demands from
markets that have not achieved convergence. Column (1) takes R4 as the control treatment, and it
largely validates H2: subjects’ demands in the C2 and ST networks are lower than in R4 and the
differences are highly significant (p < 0.01). The difference between the R4 and C1 treatments is
in the expected direction, but it is not statistically significant. Column (2) takes C1 as the control
treatment, and it partially validates H3: subjects’ demands in the C2 and ST networks are lower
than in C1, but only the difference with ST is marginally significant (p < 0.10). Column (3) takes
C2 as the control treatment, and it validates H4: there is no significant difference between subjects’
demands in the C2 and ST networks.

Hypotheses H2 − H4 hold only after convergence, so a proper validation needs to limit the
analysis to subjects’ demands after the markets have converged. Columns (4)-(6) in Table 4 take
a first step by limiting the data to the last 17 trading rounds of each market. I selected this cutoff
point because the convergence analysis summarized in Table 2 shows that on average markets
converges after 33 out of 50 rounds. However, this is a rough approximation because the variability
in convergence time is high across markets. In contrast to the analysis with the whole data, the
results now provide a validation of H3. Column (5) takes C1 as the control treatment, and it shows
that, as expected, subjects’ demands in the ST and C2 networks are significantly lower than in C1
at the 5% and 10% significance level respectively. Hypotheses H2 and H4 continue to be validated,
as in the analysis that uses the whole sample. Column (4) takes R4 as the control treatment,
and it shows that subjects’ demands in the C2 and ST networks are lower than in R4 and the
differences are highly significant (p < 0.01). The difference between the R4 and C1 treatments is
in the expected direction, but it is not statistically significant. Column (6) takes C2 as the control
treatment, and it shows that there is no significant difference between subjects’ demands in the C2
and ST networks.

Columns (7)-(9) in Table 5 restrict the analysis to the markets that have achieved a stable
convergence and to subjects’ demands in these markets after they have converged. This is the
most relevant data to test H2-H4, although now the panel is unbalanced because markets achieve
convergence at different times. Column (8) takes R4 as the control treatment, and it fully validates
H2: subjects’ demands in the C1, C2 and ST networks are all lower than in R4 and the differences
are highly significant (p < 0.01) for all treatments. Column (7) takes C1 as the control treatment,
and it largely validates H3: subjects’ demands in the C2 networks are lower than in R4 and the
difference is highly significant (p < 0.01). The difference between the C1 and ST treatments is in
the expected direction, but it is not statistically significant. Column (9) takes C2 as the control
treatment, and it fully validates H4: there is no difference between the C2 and ST networks. In
general, the results of the experiment lend support to the theoretical predictions on how subjects’
demands change depending on the underlying communication network of the group they belong to.

A further prediction of the theoretical analysis is that after convergence a subject’s demand
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Table 5: Impact of overall network structure and individual network position on buyer demand

Dep. var.: subject’s demand (7) (8) (9) (10) (11)

R4 1.449∗∗∗ 2.580∗∗∗

(0.434) (0.480)

C1 -1.449∗∗∗ 1.131∗∗∗

(0.434) (0.385)

C2 -1.131∗∗∗ -2.580∗∗∗

(0.385) (0.480)

ST -0.513 -1.961∗∗∗ 0.618
(0.339) (0.400) (0.403)

ST center 0.00815
(0.111)

C2 degree 1 0.0441
(0.182)

C2 degree 3 0.126
(0.205)

Risk (Holt-Laury) 0.0203 0.0203 0.0203 0.0263 0.0196
(0.0215) (0.0215) (0.0215) (0.0223) (0.0301)

Age -0.0102 -0.0102 -0.0102 -0.0322∗ 0.00149
(0.0107) (0.0107) (0.0107) (0.0179) (0.0166)

Gender -0.0912 -0.0912 -0.0912 0.0903 -0.230
(0.102) (0.102) (0.102) (0.131) (0.234)

Trust -0.140 -0.140 -0.140 -0.500∗∗∗ 0.160∗∗

(0.109) (0.109) (0.109) (0.0969) (0.0781)

Social Activities -0.0516∗∗ -0.0516∗∗ -0.0516∗∗ 0.0454 -0.00466
(0.0205) (0.0205) (0.0205) (0.0405) (0.0377)

Constant 11.5192∗∗∗ 13.3009∗∗∗ 10.3879∗∗∗ 9.7539∗∗∗ 8.4396∗∗∗

(0.5020) (0.5715) (0.5561) (0.4126) (0.3934)

Observations 2568 2568 2568 3900 3900
R2 0.3924 0.3924 0.3924 0.2450 0.4081

GLS panel estimation with random effects per subject and standard errors clustered at the network level.

All specifications include trading round as a trend control and session fixed effects.

All specifications include the Memory and Computations controls which are always insignificant, and

they are therefore omitted in the table to save space.

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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is independent of the subject’s position in the network, i.e. only the overall network structure
matters. It is not possible to test this prediction in the R4 and C1 networks in which all positions
in the network are equivalent, but one can test it with hypotheses H5 and H6 for the ST and C2
networks respectively. Column (10) in Table 5 restricts the analysis to the ST treatment, and it
tests H5 by introducing the ST center variable, which is equal to 1 if the subject is positioned at
the center of the star network and it is 0 otherwise. The results validate H5: the ST center variable
is insignificant so the position of subjects in the star network is not a determinant of their demand.
Column (11) in Table 5 restricts the analysis to the C2 treatment, and it tests H6 by introducing
the C2 degree 1 and C2 degree 3 variables, which are equal to 1 if the subject is in a position with
1 and 3 connections respectively, and they are equal to 0 otherwise. The results validate H6: the
C2 degree 1 and C2 degree 3 variables are both insignificant so the position of subjects in the circle
with spokes network is not a determinant of their demand.

The final hypothesis H7 states that the more risk-loving subjects are the higher is their demand.
I included in all regressions the Risk (Holt-Laury) variable which we obtain by making subjects fill
in a standard Holt-Laury risk questionnaire, as described in section 4. The variable is coded such
that higher values correspond to subjects that are more risk-loving. As expected, it is positive in all
regressions and highly significant (p < 0.01) in specifications (1)-(3) that include the whole data.

6 A unique network of buyers and sellers

In the set-up of the model analyzed so far, buyers and sellers belong to separate groups. However,
there are many contexts in which this is not the case and both buyers and sellers are part of
the same community. Would the results of the model continue to hold in these contexts? This
section investigates how the results in section 3 change if buyers and sellers belong to the same
communication network. Section 6.1 illustrates the changes to the model and derives the bargaining
solution, section 6.2 discusses the implications for the desirable communication structure for the
members of a group, and section 6.3 carries out the comparative statics analysis.

6.1 Set-up and bargaining solution

There are two main changes to the set-up of the model that are required to describe a context where
buyers and sellers are part of the same communication network. First, consider the information
arrival process. Assume agent b ∈ B is picked to play the game at time t + 1: in the ∆t = 1
time period she receives information from other buyers in B and other sellers in S about past
bargaining rounds. As before, the expected total amount of information b receives before each
bargaining round is equal to

∑
j∈Lb(g)

E[P (sbj)] = E[P (sb)] =
∑

j∈Lb(g)
gbj = zb(g). The only

difference is that here zb(g) =
∑

j∈B,S gbj : b’s sample comes from both buyers and sellers. The
expected realizations of the Poisson processes define a weighted, undirected network of buyers and
sellers, which is represented by a symmetric matrix [gij ]

n×n.
Second, consider the elements s of the state space S of the Markov process. Here, s =

{v1, ...,v2n}, i.e. for each agent i there are two vectors vi and v2i of size m. If i = 1, ..., n
then vi = {yik−m+1, ..., y

i
k}, i.e. if i ∈ B then the entries of vi are the last m demands made by

sellers in bargaining rounds involving i, and if i ∈ S then the entries of vi are i’s last m demands.
Similarly, if i = n+ 1, ..., 2n then vi = {xik−m+1, ..., x

i
k}. Assume that when a buyer b ∈ B is picked

to play the game, she receives a sample of information from her neighborhood about past demands
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made by sellers, i.e. the demands in the sample come from v1, ...,vn. Similarly, when a seller s ∈ S
is picked to play the game, the demands in the sample come from vn+1, ...,v2n.

The unique stable division is unchanged from the case of separate communication networks of
buyers and sellers.

Theorem 3. There exists a unique stable division (x∗, 1 − x∗). It is the one that maximizes the
following product:

uz
min
b (x)vz

min
s (1− x)

In other words, it is the asymmetric Nash bargaining solution with weights zminb (g) and zmins (g).

Lemma 2 is unchanged and therefore the proof of Theorem 3 follows the same argument as
the proof of Theorem 2, and it is therefore omitted. The size of the information sample of the
least informed member(s) of a group is the key determinant of the deal the group obtains in
equilibrium. Whether this information comes from members of the same group or of the other
group is inconsequential for the split of the pie. As in Theorem 2, the buyers with the minimum
weighted degree will be the least informed and therefore they will be more susceptible to respond
to mistakes from the sellers. Over time, this susceptibility weakens the bargaining position of the
whole group of buyers, leading to the establishment of the conventional split that maximizes the
product in (4).

6.2 Core-periphery networks

The introduction of communication across groups does not change the ANB solution. However,
the desirable architecture for the group of buyers in this setting is not the same as in section 3.3
because here the sellers are part of the network. The corollary below shows that the desirable
communication structures for the buyers are core-periphery networks where the buyers are at the
core and the sellers at the periphery. For expository purposes this section restricts the analysis to
unweighted networks. However, the proof of the statement of Corollary 4 in the appendix is for the
general case of weighted networks.

First of all, we need to give a formal definition of core-periphery networks.

Definition 9. A semi-bipartite network g(H) is a network with a subset of agents H ⊂ N , with
|H| ≤ |N |/2, such that di(g) = 1 for all i ∈ H and if i, j ∈ H then gij = 0.

Definition 10. Consider the set G of undirected, unweighted networks with n nodes. A core-
periphery network is a connected and semi-bipartite network g(H). The agents in N\H form the
core, which is a quasi-regular network gd,s, and the agents in H form the periphery.

The key characteristic of core-periphery networks is that they divide a society into two classes
of individuals: on the one hand an elite of core individuals who are well-connected with each other,
and on the other hand a group of peripheral individuals that are dependent on the elite and poorly
connected with each other. It is intuitively clear why it would be desirable for the buyers to be at
the core, the following corollary formalizes this intuition.

Corollary 4. Consider the set G of all possible communication structures for a group of n agents
comprising nB buyers and nS < nB sellers, and where the total number of links is L ≤ nB

2 (nB−1).

Let d =
⌊
2L+ns−1

nB

⌋
and let s ∈ R+ be the strength of each link. The networks which maximize the
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share buyers obtain in equilibrium are core-periphery networks where buyers form a quasi-regular
network gd,s at the core and sellers are at the periphery. The same statement holds with the roles
of buyers and sellers reversed.

At the periphery sellers have the lowest number of links needed for the network to be connected,
and at the same time they take the least number of links away from the buyers. The sellers’
information sample is as small as possible: it is equal to the strength s of one link. On the other
hand, at the core buyers maximize the number of links of the least connected buyer(s) given the
available budget L. By forming a quasi-regular network at the core, the buyers’ information sample
is as large as possible, as shown in Corollary 3.

The proof in Appendix A is more general than the statement above and it characterizes the
subset of weighted networks that maximize the share of a group. There are three main steps in
the proof. First, for the sellers to get the smallest possible share there must be at least one seller
s0 with only one weak link. Second, the sellers s ∈ S\s0 should have at least the lowest number
of links needed for the network to be connected while at the same time take the least number of
links away from the buyers. Thus each seller, apart from s0, is connected by one strong link to
a buyer. Third, following the argument of Corollary 3, the buyers should form a regular network
with strong links to maximize the smallest weighted degree among all the buyers. The remaining
links can be assigned at random (as long as none of them links to s0) so the core is a quasi-regular
network of buyers and each seller has only one or a few links.

6.3 Comparative statics and the 50-50 split

When buyers and sellers share the same communication network, any change in the social network
structure affects both buyers and sellers, and therefore the comparative statics will differ from the
case of separate networks. The following is the equivalent statement to Corollary 1 in the modified
set-up where buyers and sellers belong to the same communication network.

Corollary 5. Let (x∗, 1− x∗) be the ANB for sets of agents B and S that communicate through a
network g with degree distribution p(z).

(i) If p′(z) is a variance-preserving FOSD shift of p(z) then x′∗ = x∗.
(ii) Assume that the least weighted degree for the sellers is (weakly) larger than the mean degree,

i.e. zmins (g) ≥ µ[p(z)]. If p′′(z) is a mean-preserving SOSD shift of p(z) then x′′∗ ≥ x∗.
The same statement holds reversing the roles of buyers and sellers.

A shift to a denser communication network, without any changes in the variance of the distri-
bution, leaves the equilibrium ANB unchanged. This is because the weighted degrees of the least
connected buyers and sellers will change in absolute value, but not in relative value to each other.
On the other hand, a shift to a more homogeneous communication network, holding constant the
mean of the degree distribution, changes the equilibrium because it affects the relative values of
the least connected buyers and sellers. Specifically, as the network becomes more homogeneous the
difference between the shares of the two groups narrows down.

Corollary 5 further highlights how the introduction of a network to model information flows
leads to new insights that are not accessible to a model without the network. As the statements
of theorems 2 and 3 make clear, the fact that buyers and sellers belong to separate or the same
communication network has no impact on the long-term equilibrium division making these two cases
indistinguishable. However, the introduction of the network allows a comparative statics analysis
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that highlights how changes in the network affect the equilibrium division. The comparative statics
clearly differs if buyers and sellers belong to the same network, and this leads to the insight of
Corollary 5 that a shift in the distribution of connections that decreases the variability in number
of connections across agents narrows down the difference in the shares that buyers and sellers
obtain.

The model predicts that societies with more homogeneous social groups would have more equi-
table divisions. The limit network after a sufficient number of SOSD shifts is a regular weighted
network: if all the agents have the same utility function, then the equilibrium division in a regular
weighted network is the 50-50 split.

Corollary 6. Let g be a regular weighted network and let all agents have the same utility function,
then 50-50 is the unique stable division.

In the extreme case of a regular weighted communication network the equilibrium division is
50-50, which suggests that this well-observed phenomenon may be more prevalent in societies with
a very flat and non-hierarchical social structure. The mechanism that leads to the emergence of the
50-50 division in this model differs from other mechanisms previously advanced in the literature.
Schelling [1960] advanced the idea that 50-50 is a prominent focal point, whose salience is exploited
by two bargainers to coordinate on an efficient division. In Young [1993a]’s framework the 50-50
division emerges in societies where there are some individuals that exchange roles and, at different
times, can be both buyers and sellers. On the other hand, in this model the driving force leading
to the emergence of the 50-50 division is the homogeneity of the social structure of the society that
buyers and sellers are embedded in.

7 Indirect communication

The basic set-up of the model only allows for direct communication between agents in the same
group. In other words, imagine that there are 3 buyers b, b′ and b′′ such that gbb′ = gb′b′′ = 1 and
gbb′′ = 0. The set-up analyzed so far allows agent b to receive information from b′ about demands
made by sellers in past bargaining rounds involving b′, but not to receive information from b′ about
demands made by sellers in past transactions involving b′′ despite the fact that b′ may have just
received that information.

This section presents an extension of the basic model which allows for this type of indirect
communication, i.e. information traveling more than one step in the network. It shows that all
the results are robust to the introduction of indirect communication and that they generalize in
a straightforward way by replacing degree with the concept of decay r-centrality. The proofs are
omitted given that only minor changes are required to adapt the proofs in Appendix A.

It is necessary to first introduce some new notation. A path p(i, j; g) between i and j in a graph
g is a sequence of links p(i, j; g) = {gii1 , gi1i2 , ..., gipj} such that gkl > 0 for all gkl ∈ p(i, j; g). The
length of a path is |p(i, j; g)|, and if there is no path between i and j then the length is infinite.
The geodesic distance D(i, j; g) between i and j in g is the minimum number of links that need to
be used along some network path to connect i and j. If there is no such path, then D(i, j; g) =∞.

Define by grij = min{gkl | gkl ∈ p(i, j; g), |p(i, j; g)| = D(i, j; g) = r} the information bottleneck
between i and j, and note that this is equal to gij if i and j are directly connected. The r-
neighborhood of i in g is Lri (g) = {j ∈ N |D(i, j; g) ≤ r}, where r ∈ N+ and clearly the case of r = 1
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is simply the neighborhood. Let δ ∈ (0, 1) be a discount factor that captures how much information
decays as it travels through the network. The definition of decay r-centrality is the following:

Definition 11. The decay r-centrality of i in g is Ci(r, g) ≡
∑

j∈Lr
i (g)

grijδ
D(i,j;g)−1

This centrality metric captures how much information an agent i receives from other agents
who are at a distance less than or equal to r in the network. A difference with the basic framework
is in the process of information arrival because now agents receive information from their extended
neighborhood up to a distance r. Formally, in the ∆t = 1 time interval, the probability P (sbj(∆t =
1) = k) that b receives a sample sbj(∆t = 1) of k past bargains from agent j is equal to:

P (sbj(∆t = 1) = k) =
e−g

r
bjδ

D(i,j;g)−1

(grbjδ
D(i,j;g)−1)k

k!

where grbjδ
D(i,j;g)−1 is the rate of arrival of information to b from j. By standard properties of

Poisson processes, the expected amount of information b receives from j before each bargaining
round is E[P (sbj)] = grbjδ

D(i,j;g)−1. It is straightforward to see that the expected total amount of
information b receives before each bargaining round is equal to b’s decay r-centrality:∑

j∈Lr
b(g)

E[P (sbj)] = E[P (sb)] =
∑

j∈Lr
b(g)

grbjδ
D(i,j;g)−1 = Cb(r, g)

The definition of the Markov process and the other components of the set-up of the model are
unchanged.

Now consider the unperturbed process, as in section 3.1. The following theorem is the equivalent
version of Theorem 1 in this more general set-up: it shows that if information about the history
of play is sufficiently incomplete then the unperturbed process converges to a convention, i.e. a
(x, 1− x) split as defined in Definition 3.

Theorem 4. Let r be the maximum distance at which information travels in a group. Assume both
gB and gS are connected and there is at least one pair of agents {i, j} in each network such that
Dij(g

B) > r and Dij(g
S) > r. The bargaining process converges almost surely to a convention.

First of all, note that if r = 1 then the statement above reduces to the statement of Theorem 1 as
expected. Second, the intuition for the statement of the theorem is very similar to the special case
of r = 1. As already mentioned, Theorem 1 in Young [1993b] proves that adaptive play converges
almost surely to a convention in any weakly acyclic game with n agents as long as information is
sufficiently incomplete. Here the incompleteness of information is given by the network structure:
if the network is such that there are at least two agents who are at a distance larger than r then
there will be agents who cannot sample some past rounds because they were played by agents in
their group with whom they do not communicate.

Third, note that the subset of networks on which the process converges shrinks as r increases.
If r = 1 then there will be convergence in any network that is not the complete network because
it is sufficient that two agents are not connected to ensure that they have incomplete information
about the past history. At the other extreme if r → ∞ then the statement of the theorem has
almost no bite because information about past plays is available to anyone in the network as long
as the network is connected. This illustrates the importance of the network structure to deliver
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the incompleteness of information that is crucial to derive sufficient conditions for convergence to
a convention.

As in the case of r = 1 analyzed in section 3, it is necessary to introduce perturbations in the
system in order to obtain sharper equilibrium predictions that select one out of the large number of
possible conventions. Define Br

min = {j ∈ B | dCj(r, gB)e ≤ dCb(r, gB)e,∀b ∈ B} to be the subset
of buyers with the least decay r-centrality. Let Cminb (r, gB) = dCj(r, gB)e for j ∈ Br

min. Equivalent
definitions apply to the sellers. The following theorem is the general version of Theorem 2 for the
case of an arbitrary r.

Theorem 5. There exists a unique stable division (x∗, 1 − x∗). It is the one that maximizes the
following product:

uC
min
b (x)vC

min
s (1− x) (5)

In other words, it is the asymmetric Nash bargaining solution with weights Cminb (r, gB) and Cmins (r, gS).

Note that if r = 1 then decay r-centrality is the same as degree and therefore the statement of
the theorem reduces to the one presented in section 3.2. The intuition is also very similar to the
case of r = 1. The share a group obtains in equilibrium crucially depends on the communication
network connecting the members of the group. Specifically, it hinges on the agents in the group
with the smallest extended neighborhoods, in terms of the number and/or strength of the links
connecting them to other agents up to the information radius r. The agents with the smallest
extended neighborhoods will be the least informed when they have to bargain, and therefore they
will be the most susceptible to respond to mistakes from the other side. In the long-run this
susceptibility weakens the bargaining position of the whole group.

It is also possible to extend the results of the version of the model in section 6, where buyers
and sellers belong to the same network, to allow for indirect communication among agents. The
generalization of the results follows along the same lines as the generalization of the theorems for
the version of the model with separate networks, and it is therefore left to the reader to explore it.

8 Conclusion

This paper has investigated the informational advantage an individual derives from being part of
a group in a decentralized market where there is incomplete information about past transactions.
The communication patterns within the group determine the information the individual has before
a private bilateral transaction, and the outcome of the bargaining hinges on the accuracy of this
information. In the long-run equilibrium every member of the group obtains the same share of the
good in each transaction, and the group communication network critically determines the market
outcome. More specifically, the equilibrium division depends on the number and the strength of
the connections of the least connected individuals in each group. An immediate consequence of
this result is that individuals belonging to a group with a high density and a low variability of
connections across individuals fare better.

These theoretical predictions are validated in a lab experiment where the subjects are assigned to
a group and they trade in an artificial market. The treatment variable is the communication network
of the group the subjects are assigned to. The type of social relation that is investigated allows to
sidestep the difficult task of credibly creating a social relation in the lab: creating a communication
network is equivalent to designing a communication protocol among the workstations the subjects
are assigned to. The creation of the network in the lab and the random assignment of subjects
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to different networks allows the unambiguous identification of the causal relation from network
structure to the market outcome, which is usually unattainable with field data. The results of the
experiment lend support to the theoretical predictions.

Network theorists have only recently started to examine models that investigate the role of
network structure in determining market outcomes. In these models the mechanisms through
which network structure affects market outcomes vary widely, reflecting the multiplicity of possible
types of social interactions. This paper focused on the role of network structure as a carrier of
market information. Hopefully this model may serve as a starting point for future theoretical and
empirical work that aims at identifying the role of network structure using real market data.
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A Appendix: Proofs

This appendix contains all the proofs omitted in the main body of the paper. Hereafter let δ = 10−p

(p ∈ Z+) be the precision of the demands, and assume xt, yt ∈ D, where D is the set of all p-place

decimal fractions that are feasible demands.

Proof of Lemma 1. Suppose the process is in state x at time t, and pick any two agents b ∈ B
and s ∈ S to play the Nash demand game at time t + 1. For any sample b receives from her

neighborhood, the cumulative distribution G(y) of previous demands by sellers is a probability

mass function with value 1 at 1−x. Thus, b’s best reply is always to demand x. Following a similar

argument, the seller s’ best reply is always 1− x. It follows that the state of the system at t+ 1 is

the same as it was at t, and therefore x is an absorbing state of P .

Proof of Theorem 1. The goal is to show that from any initial state s there is a positive proba-

bility p independent of t of reaching a convention within a finite number of steps. Select individuals

b, b′, b0 such that b ∈ Lb′ ∩ Lb0 and gb′b0 = 0. Similarly, select individuals s, s′, s0 such that

s′ ∈ Ls ∩ Ls0 and gss0 = 0. Note that such individuals must exist because by assumption the

networks are connected and they are not complete networks. Figure 2 in section 3 illustrates two

networks of buyers and sellers with individuals b, b′, b0 and s, s′, s0. Note that in figure 2 agents b0

and s0 are labeled b′′ and s′′ respectively. Consider the following steps from t onwards.

(i) [t, t + m]: There is a positive probability that b and s (or agents like them17) will play

the game in every period t ∈ [t, t + m]. Also, there is a positive probability that b and s will

draw samples σ and σ′ respectively. Let x and y be the best replies of b and s to these samples

respectively. Then there is a positive probability of obtaining a run of (x, y) for m periods in

succession such that vb = (y, ..., y) and vs = (x, ..., x).18

(ii) [t+m+ 1, t+ 2m]: There is a positive probability that b′ and s′ (or agents like them19) will

play the game in every period t ∈ [t+m+ 1, t+ 2m]. There is a positive probability that they will

sample from vb = (y, ..., y) and vs = (x, ..., x) respectively. Thus, there is a positive probability of

obtaining a run of (1 − y, 1 − x) for m periods in succession such that vb′ = (1 − x, ..., 1 − x) and

vs′ = (1− y, ..., 1− y).

17An agent bi ∈ B that is ”like” b is such that bi ∈ Lb′ ∩ Lb0 . This condition allows bi to potentially collect
the same sample of information σ as b. Similarly, an agent si that is ”like” s is such that si ∈ Ls′\s0 , where
Ls′\s0 = {j ∈ N | j ∈ Ls′ , j /∈ Ls0}.

18The argument here has been simplified on a number of dimensions for expository purposes: 1) it is not necessary
that the same pair of agents plays in each of the m rounds, it is sufficient that they are ”like” b or s (see footnote
above); 2) it is not necessary that the m rounds are consecutive, as long as there is a finite time between them and
they are still in the state s at the end of the third step below; 3) if different agents are involved in these rounds,
then the state s of the system at the end of this step will not be such that there are two vectors vb = (y, ..., y) and
vs = (x, ..., x), but such that there are m entries of vectors vi ∈ s equal to y and m entries of vectors vj ∈ s equal
to x, with i ∈ B and j ∈ S. The same observations apply to the second step below.

19an agent bi ∈ B that is ”like” b′ is such that bi ∈ Lb\b0 . This condition allows bi to potentially collect the same
sample of information ρ as b′. Similarly, an agent si that is ”like” s′ is such that si ∈ Ls ∩ Ls0 .
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(iii) [t + 2m + 1, t + 3m]: There is a positive probability that b0 and s0 will play the game

in every period t ∈ [t + 2m + 1, t + 3m]. There is a positive probability that b0 will sample from

vb = (y, ..., y) and that s0 will sample from vs′ = (1 − y, ..., 1 − y). Their best reply will then be

(1−y, y), so there is a positive probability of obtaining a run of (1−y, y) for m periods in succession

such that vb0 = (y, ..., y) and vs0 = (1− y, ..., 1− y).

(iv) [t + 3m + 1, t + 4m]: There is a positive probability that agents b1 ∈ Lb0 and s1 ∈ Ls0

play the game for the next m periods. There is a positive probability that their samples come

from vb0 and vs0 respectively. Their best reply will then be (1 − y, y), so there is a positive

probability of obtaining a run of (1− y, y) for m periods in succession such that vb1 = (y, ..., y) and

vs1 = (1− y, ..., 1− y).

(v) [t + 4m + 1, t + 5m]: There is a positive probability that agents b2 ∈
⋃k=1
k=0 Lbk and s2 ∈⋃k=1

k=0 Lsk , with b2 6= b0, b1 and s2 6= s0, s1 play the game for the next m periods. There is a positive

probability that their samples come from (vb0 ,vb1) and (vs0 ,vs1) respectively. Their best reply will

then be (1− y, y), so there is a positive probability of obtaining a run of (1− y, y) for m periods in

succession such that vb2 = (y, ..., y) and vs2 = (1− y, ..., 1− y).

(vi) Now iterate the following step for p = 3, ..., nmax − 1, where nmax = max{nB, nS}.
[t + (p + 2)m + 1, t + (p + 3)m]: There is a positive probability that agents bp ∈

⋃k=p−1
k=0 Lbk and

sp ∈
⋃k=p−1
k=0 Lsk , with bp 6= b0, ..., bp−1 and sp 6= s0, ..., sp−1 play the game for the next m periods.

There is a positive probability that their samples come from (vb0 , ...,vbp−1) and (vs0 , ...,vsp−1)

respectively. Their best reply will then be (1− y, y), so there is a positive probability of obtaining

a run of (1− y, y) for m periods in succession such that vbp = (y, ..., y) and vsp = (1− y, ..., 1− y).

At time t + (nmax + 2)m the state of the system is such that vi = (y, ..., y) ∀i ∈ B and

vj = (1 − y, ..., 1 − y) ∀j ∈ S, i.e. the system has reached a convention. Thus, from any initial

state s there is a positive probability of reaching a convention within [nmax + 2]m periods. Given

that the number of states is finite, there is a positive probability p of reaching a convention within

[nmax + 2]m periods, which concludes the proof.

Proof of Lemma 2. Suppose that the process is at the convention x = (x, 1 − x), where x ∈
D0 = {x ∈ D : δ ≤ x ≤ 1− δ}. Obviously, to move from x to another convention x′ = (x′, 1− x′)
the agents need to make mistakes. Without loss of generality, assume that the sellers make the

mistakes. Let π be a path of least resistance from x to x′, and let s be the first state on this path.

In order to get to s, a buyer b0 must have received a sample σ where by mistake some sellers have

demanded a quantity that differs from 1−x, such that b0’s best reply to σ is to demand a quantity

x′ 6= x. The buyers who require the minimum number of mistakes to switch best reply are the ones

receiving the smallest sample. Recall that Bmin = {j ∈ B | dzje ≤ dzbe, ∀b ∈ B} is the subset of

buyers with the least weighted degree. Let zminb ≡ zj for j ∈ Bmin and let b0 ∈ Bmin. Denote by p

the number of mistakes by sellers in σ.

Consider the sample σ and construct a different sample σ′ such that every entry of σ that differs
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from 1−x is replaced by 1−x′, and every entry of σ equal to 1−x stays the same. Note that if b0’s

best reply to σ was x′, then her best reply to σ′ must also be x′. By the mean-field assumption, σ′

is composed by a total of zminb demands: p demands are equal to 1− x′ and zminb − p are equal to

1− x.

Now, let us construct an alternative path π′ from x to x′ such that π′ is also a path of least

resistance with p mistakes. Start with the system at the convention x at time t. Consider the time

t1 when the mdb0 bargaining rounds played by buyers b ∈ Lb0 happened after t. Let p of these mdb0
bargaining rounds be such that the seller involved made a mistake and demanded 1 − x′. There

is a positive probability that b0 plays with seller s0 ∈ S at time t1 and receives a sample σ′, and

therefore she plays the best-reply demand x. Moreover, there is a positive probability that in the

next m − 1 rounds that b0 and s0 are picked to play, they again play with each other. Moreover,

there is a positive probability that in each of these rounds b0 receives the sample σ′, which could

still be available, and plays the best-reply demand x′. Thus, at some time t2 > t1, vs0 = {x′, ..., x′}.
There is a positive probability that at time t3 > t2 agents b0 and s1 ∈ Ls0 are picked to play,

and that b0 receives the sample σ′ and s1 receives his sample exclusively from vs0 .20 Thus, b0 will

play the best-reply demand x′ and s1 will play the best-reply demand 1 − x′. Moreover, there

is a positive probability that in the next m − 1 rounds that b0 and s1 are picked to play, they

again play with each other. Moreover, there is a positive probability that in each of these rounds

they receive the same samples they got at t3, which could still be available, and they play the

best-reply demands x′ and 1 − x′ respectively. Thus, at some time t4 > t3, vs1 = {x′, ..., x′} and

vb0 = {1− x′, ..., 1− x′}.
Following the same argument as the proof of theorem 1 above, it is clear that the process can

now converge to the new convention x′ without any further mistakes. Clearly, the same argument

can be used to construct an alternative least-resistant path which starts with the buyers making q

mistakes. In order to determine which least-resistant path requires the lowest number of mistakes,

one has to compute these two numbers and choose the smallest. This leads us to consider four

possible cases: two depending on whether the buyers or sellers make mistakes, and two depending

on whether they ask a quantity higher or lower than what they get under the convention x.

(i) Sellers make a mistaken demand 1− x′ < 1− x
Suppose sellers make p mistaken demands. Clearly, p ≤ zminb , which is the sample size for the

buyers with the smallest sample. As above, let b0 ∈ Bmin. Buyer b0 therefore receives a sample

of p mistaken demands 1 − x′ and zminb − p conventional demands 1 − x. If b0 demands x′ > x

then she expects to obtain utility u(x′) with probability (p/zminb ). On the other hand, b0 demands

x < x′ then she expects to obtain utility u(x) for sure (because if the seller makes a mistake and

demands 1− x′ then 1− x′ + x < 1 and each agent gets their demand). Thus, b0 switches to x′ if

20Note that s1 can receive his sample exclusively from vs0 only if the size m of this vector is larger than zs0 . This
is guaranteed by the assumption made in section 3.2 that the individual memory m ≥ max{zb, zs}, where b ∈ B and
s ∈ S. Note that a lower bound would also be sufficient, what is necessary is that m is large enough.
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p ≥ zminb
u(x)
u(x′) . The minimum p occurs with the largest possible u(x′), i.e. with x′ = 1 − δ, which

is the largest possible mistake the sellers can make, so:

p = zminb

u(x)

u(1− δ)
(A.1)

(ii) Sellers make a mistaken demand 1− x′ > 1− x
Now suppose sellers make p mistaken demands, but they demand more than the conventional

demand. Now, if b0 demands x′ < x then she expects to obtain utility u(x′) for sure. On the other

hand, if b0 demands x > x′ then she expects to obtain utility u(x) with probability (zminb −p)/zminb .

Thus, b0 switches to x′ if p ≥ zminb

(
1− u(x′)

u(x)

)
. The minimum p occurs with the largest possible

u(x′), i.e. with x′ = x− δ, which is the largest possible mistake x′ < x the sellers can make, so:

p = zminb

(
1− u(x− δ)

u(x)

)
(A.2)

(iii) Buyers make a mistaken demand x′ < x

Following an argument similar to case (i), the minimum number q of mistaken demands by buyers

needed for the seller with the smallest sample to switch is equal to:

q = zmins

v(1− x)

v(1− δ)
(A.3)

(iv) Buyers make a mistaken demand x′ > x

Following an argument similar to case (ii), the minimum number q of mistaken demands by buyers

needed for the seller with the smallest sample to switch is equal to:

q = zmins

(
1− v(1− x− δ)

v(1− x)

)
(A.4)

Combining equations (A.1), (A.2), (A.3), and (A.4) it follows that the least number of mistakes

necessary to move out of the convention x is dR(x)e, where R(x) is equal to:

R(x) = min

{
zminb

u(x)

u(1− δ)
, zminb

(
1− u(x− δ)

u(x)

)
, zmins

v(1− x)

v(1− δ)
, zmins

(
1− v(1− x− δ)

v(1− x)

)}
It is straightforward to show that the first term is at least as large as the last one for all x ∈ D0, so

it can be ignored. Thus, the minimum resistance to move out of the x convention is dR(x)e, where

R(x) is given by (3).

Proof of Theorem 2. Lemma 2 in Young [1993a] shows that a division (x, 1 − x) is generically

stable if and only if x maximizes the function R(x) in (3). Lemma 3 in Young [1993a] shows that

as δ → 0, the maxima of the function R(x) converge to the asymmetric Nash bargaining solution
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in (4). The proofs of the equivalent statements to lemmas 2 and 3 for this model are essentially

the same as in Young [1993a], and they are therefore omitted here.

Proof of Corollary 1. Let us look at (i) and (ii) separately.

(i) First, consider the case i = B. The goal is to compare the (x∗, 1 − x∗) ANB solution for

agents that communicate through networks gB and gS , and the (x′∗, 1 − x′∗) ANB solution for

agents that communicate through networks g′B and gS , where p′b(z) FOSD pb(z). The claim is that

x′∗ ≥ x∗. From equation (3) we have:

R(x) = min

{
zminb (gB)

(
1− u(x− δ)

u(x)

)
, zmins (gS)

v(1− x)

v(1− δ)
, zmins (gS)

(
1− v(1− x− δ)

v(1− x)

)}
≤

≤ min

{
zminb (g′B)

(
1− u(x− δ)

u(x)

)
, zmins (gS)

v(1− x)

v(1− δ)
, zmins (gS)

(
1− v(1− x− δ)

v(1− x)

)}
= R′(x)

because, by definition of FOSD, zminb (gB) ≤ zminb (g′B). Thus, the unique division (x′∗, 1 − x′∗)
that maximizes R′(x) is such that x′∗ ≥ x∗, where (x∗, 1−x∗) is the unique division that maximizes

R(x). The case i = S is similar, and it is therefore omitted.

(ii) Note that by definition of SOSD, zminb (gB) ≤ zminb (g′′B). Replacing zminb (g′B) by zminb (g′′B),

the proof of this statement is the same as the proof of (i) above.

Proof of Corollary 4. Let us prove a more general statement by characterizing the subset of

networks GB ⊂ G that maximize buyers’ share, where G is the set of all possible networks g such

that the total number of links is L and the strength of each link is in the [s, s] range.

Assume that ns ≤ nb. First, in order to minimize sellers’ share, there must be a seller s0

such that ds0 = 1 and gs0b0 = s, i.e. s0 has only one weak link with one buyer b0. Second, for

the network to be connected each seller s ∈ S\s0 must have one link gsi, and, to maximize the

number of links of buyers, let i ∈ B, gsi = s and assign the links so that there is no buyer who is

connected to more than one seller. Third, by corollary 3, the networks that maximize the buyers’

share are quasi-regular networks generated by gd,s, where d =
⌊
2L+nS−1

2

⌋
. Here, the addition of

the nS −1 term takes into account the strong links buyers have with the sellers s ∈ S\s0. The only

restriction on the construction of the quasi-regular network is that the links assigned at random

are first assigned so that b0 and each buyer who is not linked to any seller is assigned one link, and

then the remaining links are assigned at random as long as none of them links with s0.

A similar argument to the proof of corollary 3 shows that the existence of a network g which

gives a weakly higher share to buyers and which is not in GB would lead to a contradiction. Clearly

the unweighted, core-periphery networks in the statement of corollary 4 belong to GB.

Proof of Corollary 3. Denote by GQ the quasi-regular networks generated by regular networks

in gd,a. The proof is by contradiction. Suppose there exists a network g ∈ G such that g ∈ GB and

g /∈ GQ. There are two possible cases:

39



(i) g ∈ GB and GQ ∩GB = ∅: If this is the case then minb∈B zb(g) > minb∈B zb(gd,a) = sd, i.e.

minb∈B zb(g) ≥ sd+ε. Given that the maximum link strength is s, this implies that minb∈B db(g) =

b 2LnB
c + 1 and the degree of all other buyers must be at least equal to this. But then the total

minimum number of links is nB
2 minb∈B db(g) > L, which is a contradiction.

(ii) g ∈ GB and GQ ⊂ GB: If this is the case then either minb∈B zb(g) > minb∈B zb(gd,a) or

minb∈B zb(g) = minb∈B zb(gd,a). The argument above shows that the former leads to a contradiction,

so suppose that minb∈B zb(g) = minb∈B zb(gd,a) = sd. Thus, minb∈B db(g) = d and the degree of all

other buyers must be at least equal to this. The minimum total number of links for this to hold

is d · nB/2, which leaves a maximum of L − d · nB/2 = L − bLc links to assign. But this means

that g is a quasi-regular network, no matter how the remaining links are assigned and we have a

contradiction.

Proof of Theorem 5. Let us look at (i) and (ii) separately.

(i) The goal is to compare the (x∗, 1− x∗) ANB solution for agents that communicate through

network g, and the (x′∗, 1 − x′∗) ANB solution for agents that communicate through network g′,

where p′(z) FOSD p(z) and V ar[p(z)] = V ar[p′(z)]. The claim is that x′∗ = x∗. By definition

of a variance-preserving FOSD shift, we have that zi(g) = ςzi(g
′) for each i ∈ N , where ς > 1

and ς ∈ R+. The variance-preserving FOSD shift is therefore only a rescaling of R(x) by a ς

factor. Thus, the unique division (x∗, 1− x∗) that maximizes R(x) is also the unique division that

maximizes R′(x) = ςR(x), i.e. x∗ = x′∗.

(ii) First, assume that zmins (g) > µ[p(z)]. By definition of a mean-preserving SOSD shift we

have that zminb (g
′′
) > zminb (g). Moreover, zmins (g

′′
) < zmins (g) because of the definition of SOSD

shift and the assumption that zmins (g) > µ[p(z)]. Substituting these inequalities into the expression

(3) for R(x) it is straightforward to see that the unique division (x′′∗, 1−x′′∗) that maximizes R′′(x)

must be such that x′′∗ ≥ x∗, where (x∗, 1 − x∗) is the unique division that maximizes R(x). The

case zminb (g) > µ[p(z)] is similar and it is therefore omitted.

Proof of Corollary 6. Let all agents have the same utility u(.). If g is a regular weighted network

then β ≡ zminb (g) = zmins (g) ≡ σ. Substituting this into (4) one obtains that the unique stable

division (x∗, 1− x∗) is the one that maximizes u(x)u(1− x), which is clearly x∗ = 0.5.
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B   Appendix:  Instructions                    
 
 
 
Dear participants, 
 
Welcome and thank you for participating to this experiment. Before we describe the 
experiment, we wish to inform you of a number of rules and practical details. 
 
Important notes 
 

 Silence: Please do remain quiet from now on until the end of the experiment. Those 
who do not respect the silence requirement will be asked to leave the experimental 
room.  

 No writing: You are not allowed to use a pen or take notes during this experiment  
 

 
 
General rules 
 
During this experiment you will be asked at times to take decisions that will affect your 
outcome and the outcome for other participants. It is important for you to know that your 
decisions will remain completely confidential. 
 
Each person will be assigned fictitious initials: we will always use your fictitious initials and 
never your real name or any other information that might allow other participants to identify 
you. 
 
If you have a question, please raise your hand. 
 



Description of the experiment 
 
In this experiment you will be a trader in a market. The seller that you will be trading with is 
played by the computer.  
 
The figure below is an illustration of how the trading happens. In each trading round there are 
17 vouchers at stake. You trade by inputting your demand using the keyboard and clicking on 
“Confirm.” Note that this is the amount of vouchers that you want to have for yourself.  

 
There are two potential outcomes: 
 

1) If the sum of your demand and the seller’s demand is less than or equal to 17 than you 
win the number of vouchers that you demanded 

2) If the sum of your demand and the seller’s demand is greater than 17 than you do not 
win any vouchers 

 
For example, if you input “8” then you will win 8 vouchers if the seller’s demand is equal to or 
less than 9, and you will win no vouchers if the seller’s demand is greater than 9. 
 
In general, if you make a high demand then you earn a high number of vouchers, but you run 
the risk of not getting any voucher if the seller is also making a high demand. On the other 
hand, if you make a low demand then you earn a low number of vouchers, but there is a low 
risk that you will earn nothing. The seller is in the same position as you are. 
 
 
 
 
 
 
 
 
In order to test whether you understand how the trading works, we will now play a trial 
trading round in which we will tell you the demand that the seller will make before the trading. 
This trial has no impact on your earnings.  
 
Now look at your screen. In the middle of the screen it should state the demand that the seller 
will make in the trial trading round. Now input the demand that maximizes the number of 
vouchers that you earn. You input the demand in the bottom-right corner of the screen by 
typing the number of vouchers that you want to demand for yourself and then by clicking 
“Confirm” with the left button of your mouse. Please input your demand now. 
 
Everyone should have now finished the trial trading round. If your demand was not the 
optimal demand to make, you should see it written in the blank space where you input your 
demand. Note that in the experiment you can make a demand that is below the optimal 
demand and you will get the vouchers you demanded. 
 
Please raise your hand if this has appeared on your screen so that the experimenter can come to 
your workstation and clarify any doubts about the trading procedure. 

Vouchers at stake 

17 
Your demand 

 



You belong to a group formed by 6 traders (including yourself). You are connected to some of 
the traders in your group and you can use the previous experience of the traders in your group 
to help you decide which demand to make.  
 
The figure below is an illustration of how this information will appear on your screen. You have 
information about previous demands made by the seller in transactions involving the traders 
you are connected to. In the example below the seller demanded 8 vouchers in one previous 
transaction involving your friend A. T. In three previous transactions involving your friend 
F.G., the seller demanded 9, 11 and 7 vouchers.   
 
Note that the information you receive from other traders has been randomly picked from the 
history of previous transactions, so the other traders have no role in picking this information. 
The amount of information you receive from each friend may vary across trading rounds. The 
order of display of the information is randomly generated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 
Information from friends about demands made by the seller in previous rounds: 
 

Friend Demand by the seller 

A. T.  8   

F. G.  9 11 7 
 

Vouchers at stake 

17 
Your demand 

 



Now we will show you a trading round by running through all the screenshots that you will 
see. 
 
At the beginning of each trading round you will see the following screenshot: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first line in the top-left panel indicates the total time you have to make your demand. The 
time counter starts at 15 seconds and it is red: this indicates that it is active and it is counting 
down the seconds till the end of the trading round. 
 
In the middle of the screen you have information about previous demands made by the seller 
in transactions involving the traders you are connected to.  
 
After 5 seconds the time counter reaches 10 seconds left, and the option to input your demand 
will appear in the bottom right part of the screen. You can make your demand by using the 
keyboard to input a number between 0 and 17 and then clicking “Confirm.”  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time left to make your demand:  15 sec    
 
Information from friends about demands made by the seller in previous rounds: 
 

Friend Demand by the seller 

A. T.  8   

F. G.  9 11 7 
 

Vouchers at stake 

17 
Your demand 

 

Time left to make your demand:  10 sec    
 
Information from friends about demands made by the seller in previous rounds: 
 

Friend Demand by the seller 

A. T.  8   

F. G.  9 11 7 
 

Vouchers at stake 

17 
Your demand 

 



Suppose that your demand is 8: after 5 seconds the following screenshot will appear if the sum 
of your demand and the seller’s demand is less than or equal to 17:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Otherwise, if the sum of your demand and the seller’s demand is more than 17, the following 
screenshot will appear: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that in case you fail to click on your demand within 10 seconds, the following screenshot 
will appear: 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

In this round you have won 
 

8 
 

vouchers 

In this round you have won 
 

0 
 

vouchers 
 

because the sum of demands exceeds 
 17 vouchers 

In this round you have won 
 

0 
 

vouchers 
 

because you did not make any demand 



The seller 
 
The role of the seller is played by the computer, which represents a seller who is trying to earn 
as many vouchers as possible in the trading.  
 
Similarly to you, the computer makes demands based upon its previous experience of trading 
with people in your group. Specifically, the computer samples the recent history of demands 
made by the people in your group and then chooses a demand which maximizes the expected 
number of vouchers it can win (given the sample it received). 
 
Note that the computer only uses previous experience on trading with people in your group to 
decide its demand for trading with you (and people in your group). The rule that the computer 
uses to determine its demand does not vary over the course of the experiment. 
 

 
Market 
 
You will participate in one trading session formed by 50 trading rounds. A trading session 
represents a “market.” Prior to the beginning of the market, you are randomly assigned to a 
group formed by 6 traders (including yourself). There are 50 trading rounds in the market, so 
you trade with the seller 50 times. After the 50th round a screenshot saying “The market is now 
closed” will indicate the end of the market. 
 

 
Your earnings 
 
At the end of the experiment 6 trading rounds will be selected at random to determine your 
earnings. 

The exchange rate is 1 voucher = 11 pence  
 

If we denote by V= number of vouchers won in 6 randomly drawn trading rounds, then your 
earnings at the end of experiment will be equal to: 
 
Total earnings = 11p x V 
 
Do you have any questions? 



Trading 
 
We will now start the market. We will pause the market after 3 trading rounds so that you have 
an opportunity to clarify any doubts after you have tried the trading procedure.  
 
Note that in the first trading round you do not receive any information from your friends 
because nobody has done any trading in the market yet. 
 
The initial 3 trading sessions of the trading market start NOW.  
 

 
You have now had a chance to practise trading. Please raise your hand if you have any 
questions. 
 
The market resumes NOW.  
 


	TitlePage1431
	1431

